Skip to main content
Log in

Low-Temperature Synthesis of Compounds with the Pyrochlore and Hexagonal Tungsten Bonze Structure

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper reports the synthesis of compounds with the pyrochlore and hexagonal tungsten bronze structures via thermal decomposition of heteropolyoxometalates. Using aqueous solutions, we have synthesized tungstophosphatometalates with the Keggin structure and the general formula Ct5[PW11O39(H2O)Z]⋅nH2O, where Ct = Rb+ or Cs+ and Z = Co2+, Ni2+, or Cu2+. We have studied the thermal decomposition of these compounds and identified their thermolysis products: phases with the pyrochlore and hexagonal tungsten bronze structures. Our results confirm that phosphorus, cobalt, nickel, and copper ions become incorporated into the pyrochlore and hexagonal tungsten bronze structures of the CtnxPxZxW2–2xO6 compounds. No phases with similar chemical compositions have been reported previously. Their synthesis temperature has been lowered by 200°C and the calcination time has been reduced by a factor of 2 in comparison with conventional synthesis methods. The proposed schemes of thermolysis of rubidium and cesium tungstophosphatometalates will be useful for predicting the thermal properties and phase composition of thermolysis products of analogous heteropolyoxometalates in designing new inorganic materials based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Redozubov, S.S., Nenasheva, E.A., Gaidamaka, I.M., and Zaitseva, N.V., Low-temperature ceramic materials based on pyrochlore compounds in the Bi2O3–ZnO–Nb2O5 system, Inorg. Mater., 2020, vol. 56, no. 1, pp. 77–82. https://doi.org/10.31857/S0002337X20010121

    Article  CAS  Google Scholar 

  2. Shlyakhtina, A.V., Belov, D.A., Knotko, A.V., Kolbanev, I.V., Streletskii, A.N., Karyagina, O.K., and Shcherbakova, L.G., Oxygen interstitial and vacancy conduction in symmetric LnxZrxOx/2 (Ln = Nd, Sm) solid solutions, Inorg. Mater., 2014, vol. 50, no. 10, pp. 1035–1049. https://doi.org/10.1134/S002016851410015X

    Article  CAS  Google Scholar 

  3. Krasnov, A.G., Piir, I.V., Sekushin, N.A., Baklanova, Ya.V., and Denisova, T.A., Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6MxTi2O7–δ (M = In, Li), Russ. J. Electrochem., 2017, vol. 53, no. 8, pp. 866–872. https://doi.org/10.1134/S1023193517080122

    Article  CAS  Google Scholar 

  4. Ikeda, S., Itani, T., Nango, K., and Matsumura, M., Overall water splitting on tungsten-based photocatalysts with defect pyrochlore structure, Catal. Lett., 2004, vol. 98, no. 4, pp. 229–233. https://doi.org/10.1007/s10562-004-8685-y

    Article  CAS  Google Scholar 

  5. Jitta, R.R., Gundeboina, R., Veldurthi, N.K., Guje, R., and Muga, V., Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications: a review, J. Chem. Technol. Biotechnol., 2015, vol. 90, o. 11, pp. 1937–1948. https://doi.org/10.1002/jctb.4745

  6. Spiridonov, F.M., Petrova, E.B., and Belova, I.D., Sintez, struktura i svoistva soedinenii semeistva pirokhlora (Synthesis, Structure, and Properties of Pyrochlore Compounds), Obzornaya informatsiya. Seriya auchno-tekhnicheskie prognozy v oblasti kataliza, korrozii i sinteza segnetomaterialov (Survey Information: Science and Technology Predictions in the Field of Catalysis, Corrosion, and Synthesis of Ferroelectric Materials), Moscow: NIITEKhIM, 1976.

  7. Lopanov, A.N., Lozinskii, N.S., and Moroz, Ya.A., Chemical processes accompanying the formation of modified ruthenium resistors and their functional properties, Russ. Chem. Bull., 2020, vol. 69, no. 9, pp. 1719–1723. https://doi.org/10.1007/s11172-020-2955-8

    Article  CAS  Google Scholar 

  8. Cherednichenko, L.A. and Moroz, Ya.A., Catalytic properties of heteropolytungstates with 3d elements and their thermolysis products, Kinet. Catal., 2018, vol. 59, no. 5, pp. 572–577. https://doi.org/10.1134/S0453881118050039

    Article  CAS  Google Scholar 

  9. Okuhara, T., Watanabe, H., Nishimura, T., Inumaru, K., and Misono, M., Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis, Chem. Mater., 2000, vol. 12, pp. 2230–2238. https://doi.org/10.1021/CM9907561

    Article  CAS  Google Scholar 

  10. Nikul’shin, P.A., Mozhaev, A.V., Ishutenko, D.I., Minaev, P.P., Lyashenko, A.I., and Pimerzin, A.A., Influence of the composition and morphology of nanosized transition metal sulfides prepared using the Anderson-type heteropoly compounds [X(OH)6Mo6O18]n (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6– on their catalytic properties, Kinet. Catal., 2012, vol. 53, no. 5, pp. 620–631.

    Article  Google Scholar 

  11. Allmen, K., Moré, R., Müller, R., Soriano-López, J., Linden, A., and Patzke, G.R., Nickel-containing Keggin-type polyoxometallates as hydrogen evolution catalysts: photochemical structure–activity relationships, ChemPlusChem., 2015, vol. 80, pp. 1389–1398. https://doi.org/10.1002/cplu.201500074

    Article  CAS  Google Scholar 

  12. Camarillo-Cisneros, J., Arzola-Álvarez, C., Cabral-Lares, R.M., Arzate-Quintana, C., and Arzola-Rubio, A., Optical properties of W1–xMoxO3⋅0.33H2O semiconductor oxides synthesized by hydrothermal and microwave techniques, Inorg. Chem. Commun., 2020, vol. 119, paper 107984. https://doi.org/10.3390/polym11111740

  13. Solodovnikov, S.F., Ivannikova, N.V., Solodovnikova, Z.A., and Zolotova, S.S., Synthesis and X-ray diffraction study of potassium, rubidium, and cesium polytungstates with defect pyrochlore and hexagonal tungsten bronze structures, Inorg. Mater., 1998, vol. 34, no. 8, pp. 845–853.

    CAS  Google Scholar 

  14. Klevtsov, P.V. and Sinaiko, V.A., Double tungstates of potassium, rubidium, and cesium with the Al, Ge, Cr, and Fe trivalent metals, Zh. Neorg. Khim., 1975, vol. 20, no. 8, pp. 2104–2107.

    CAS  Google Scholar 

  15. Kapyshev, A.G., Stefanovich, S.Yu., Venevtsev, Yu.N., and Katsnel’son, L.M., Growth and properties of Pb2Li1/2Nb3/2O6 antiferroelectric single crystals with the pyrochlore structure, Kristallografiya, 1976, vol. 21, no. 4, pp. 838–840.

    CAS  Google Scholar 

  16. Timofeeva, V.A., Rost kristallov iz rastvorov-rasplavov (Crystal Growth from High-Temperature Solutions), Moscow: Nauka, 1978.

  17. Mokhosoev, M.V. and Bazarova, Zh.G., Slozhnye oksidy molibdena i vol’frama s elementami I–IV grupp (Mixed Molybdenum and Tungsten Oxides with Group I–IV Elements), Moscow: Nauka, 1990.

  18. Solodovnikov, S.F., Zolotova, E.S., Solodovnikova, Z.A., Korol’kov, I.V., Yudin, V.N., Uvarov, N.F., Plyusnin, P.E., and Saranchina, E.M., Structure and Properties of the α-Cs2Mo2–xWxO7 Solid Solution, J. Struct. Chem., 2019, vol. 60, no. 6, pp. 952–960. https://doi.org/10.26902/JSC_id40567

    Article  CAS  Google Scholar 

  19. Drobasheva, T.I., Snezhkov, V.I., and Rastoropov, S.B., Alkali metal polytungstate molybdate ionic melts and their application in targeted crystal growth, Sovrem. Naukoemkie Tekhnol., 2011, no. 5, pp. 69–70.

  20. Nesterov, A.A., Kogan, V.A., Borodkin, S.A., Krikov, V.V., Vasil’eva, G.I., and Vasil’ev, I.V., Low-temperature synthesis of the BaTiO3 and PbTiO3 phases with the perovskite structure using barium and lead complexes as precursors, Sovrem. Probl. Nauki Obraz., 2013, no. 4, pp. 353–361.

  21. Semenov, S.A., Musatova, V.Yu., Drobot, D.V., and Dzhardimalieva, G.I., Thermal decomposition of acidic cobalt(II) carboxylates with unsaturated dicarboxylic anions, Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, pp. 61–68. https://doi.org/10.31857/S0044457X20010146

    Article  CAS  Google Scholar 

  22. Belova, E.V., Gavrikov, A.V., Ilyukhin, A.B., and Efimov, N.N., New cadmium cymantrene carboxylate complexes as precursors of CdMn2O4-based oxide systems, Spektroskopiya koordinatsionnykh soedinenii: sbornik nauchnykh trudov XVII mezhdunarodnoi konferentsii (Spectroscopy of Coordination Compounds: Proc. XVII Int. Conf.), Krasnodar: Kubansk. Gos. Univ., 2020, pp. 23–24.

  23. Semenov, V.N., Samofalova, T.V., Naumov, A.V., and Ovechkina, N.M., Growth of cadmium sulfide and lead sulfide layers via deposition from thiosulfate–thiourea complexes and investigation of their properties, Kondens. Sredy Mezhfaznye Granitsy, 2019, vol. 21, no. 2, pp. 240–248. https://doi.org/10.17308/kcmf.2019.21/762

    Article  CAS  Google Scholar 

  24. Jeon, B., Kim, T., Lee, D., Shin, T.J., Oh, K.W., and Park, J., Photothermal polymer nanocomposites of tungsten bronze nanorods with enhanced tensile elongation at low filler contents, Polymers, 2019, vol. 11, no. 11, paper 1740. https://doi.org/10.3390/polym11111740

  25. Pyrochlore Oxide Nanoparticles: Electrical and Dielectric Properties, Farid, M.A., Ed., Lambert: Academic, 2015.

  26. Pomogailo, A.D. and Dzhardimalieva, G.I., Metallopolimernye gibridnye nanokompozity (Metal–Polymer Hybrid Nanocomposites), Moscow: Nauka, 2015.

  27. Moroz, Ya.A. and Cherednichenko, L.A., Concerning some general relationships in the thermolysis of heteropolyoxometalates with 3d elements, Zh. Vestn. Donetsk. Nats. Univ, Ser. A: Estestv. Nauki, 2018, no. 1, pp. 95–103.

  28. Moroz, Ya.A., Lozinskii, N.S., Lopanov, A.N., Chebyshev, K.A., and Burkhovetskii, V.V., Investigation of cesium tungstophosphate thermolysis products, Zh. Vestn. Belarus. Gos. Tekh. Univ. im. V. G. Shukhova, 2020, no. 12, pp. 126–135. https://doi.org/10.34031/2071-7318-2020-5-12-126-125

  29. Pope, M.T., Heteropoly and Isopoly Oxometallates, Berlin: Springer, 1983.

    Book  Google Scholar 

  30. Moroz, Ya.A., General relationships in the synthesis of heteropoly compounds with 3d elements, Zh. Vestn. Donetsk. Nats. Univ, Ser. A: Estestv. Nauki, 2017, no. 1, pp. 92–110.

  31. Kato, C.N., Ukai, N., Miyamae, D., Arata, S., Kashiwagi, T., Nagami, M., Mori, T., Kataoka, Y., Kitagawa, Y., and Uno, H., Syntheses and X-ray crystal structures of magnesium-substituted polyoxometalates, Advanced Topics in Crystallization, Mastai, Y., Ed., Norderstedt: Books on Demand, 2015. https://doi.org/10.5772/59598

  32. Weakley, T.J.R., Crystal structure of cesiumaquanickelo(II)undecatungstophosphate dihydrate, J. Crystallogr. Spectrosc. Res., 1987, vol. 17, no. 3, pp. 383–391.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Moroz.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, Y.A., Lozinskii, N.S., Lopanov, A.N. et al. Low-Temperature Synthesis of Compounds with the Pyrochlore and Hexagonal Tungsten Bonze Structure. Inorg Mater 57, 835–842 (2021). https://doi.org/10.1134/S0020168521080069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521080069

Keywords:

Navigation