Skip to main content
Log in

4-methoxybenzalacetone, the cinnamic acid analog as a potential quorum sensing inhibitor against Chromobacterium violaceum and Pseudomonas aeruginosa

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The continuous increase in the incidence of infectious diseases and the rapid unchecked rise in multidrug-resistance to conventional antibiotics have led to the search for alternative strategies for treatment and clinical management of microbial infections. Since quorum sensing (QS) regulates numerous virulence determinants and pathogenicity in bacteria, inhibition of QS promises to be an attractive target for development of novel therapeutics. In this study, a series of cinnamic acid analogs and benzalacetone analogs were designed and synthesized, and their QS-inhibitory activities explored. We found that, among the test compounds, 4-methoxybenzalacetone (8) exhibited potent anti-quorum sensing property, as evidenced by inhibition of QS-controlled violacein production of Chromobacterium violaceum ATCC12472. The inhibitory activity of such a compound, which was the methyl keto analog of the corresponding cinnamic acid, was not only stronger than the parent cinnamic acid (1), but also superior to that of furanone, the reference drug. Based on our observations, its mechanism of quorum sensing inhibition is likely to be mediated by interference with N-acyl-homoserine lactones (AHL) synthesis. Moreover, 4-methoxybenzalacetone (8) also suppressed the production of pyocyanin, rhamnolipids and swarming motility of Pseudomonas aeruginosa, suggesting a broad spectrum of anti-QS activities of this compound. In terms of structure–activity relationship, the possible chemical substitutions on the scaffold of cinnamic acid required for QS inhibitory activity are also discussed. Since 4-methoxybenzalacetone (8) showed no toxicity to both bacteria and mammalian cells, our findings therefore indicate the anti-QS potential of this compound as a novel effective QS inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data supporting this study is provided as supplementary material accompanying this paper.

Code availability

Not applicable.

References

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9:e02331-02317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 9(2):163

    Article  PubMed Central  CAS  Google Scholar 

  • Ahmed SAKS, Rudden M, Smyth TJ, Dooley JSG, Marchant R, Banat IM (2019) Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechnol 103:3521–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asfour HZ (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct 6:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Brackman G, Coenye T (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 21:5–11

    Article  CAS  PubMed  Google Scholar 

  • Burt SA, Ojo-Fakunle VT, Woertman J, Veldhuizen EJ (2014) The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9:e93414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chokshi A, Sifri Z, Cennimo D, Horng H (2019) Global contributors to antibiotic resistance. J Glob Infect Dis 11:36–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Choo JH, Rukayadi Y, Hwang JK (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641

    CAS  PubMed  Google Scholar 

  • Chuprajob T, Changtam C, Chokchaisiri R, Chunglok W, Sornkaew N, Suksamrarn A (2014) Synthesis, cytotoxicity against human oral cancer KB cells and structure-activity relationship studies of trienone analogues of curcuminoids. Bioorg Med Chem Lett 24:2839–2844

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T (2018) Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol 26:313–328

    Article  CAS  PubMed  Google Scholar 

  • Demoss RD, Happel ME (1959) Nutritional requirements of Chromobacterium violaceum. J Bacteriol 77:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deryabin D, Galadzhieva A, Kosyan D, Duskaev G (2019) Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: modes of action. Int J Mol Sci 20:5588

    Article  CAS  PubMed Central  Google Scholar 

  • Fernández-Martínez E, Bobadilla RA, Morales-Ríos MS, Muriel P, Pérez-Álvarez V (2007) Trans-3-phenyl-2-propenoic acid (cinnamic acid) derivatives: structure-activity relationship as hepatoprotective agents. Med Chem 3:475–479

    Article  PubMed  Google Scholar 

  • Fleitas Martínez O, Rigueiras PO, Pires ÁDS, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL (2019) Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy against multidrug-resistant pathogens. Front Cell Infect Microbiol 8:444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N (2018) Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 121:293–302

    Article  CAS  PubMed  Google Scholar 

  • Haque S, Yadav DK, Bisht SC, Yadav N, Singh V, Dubey KK, Jawed A, Wahid M, Dar SA (2019) Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J Chemother 31:161–187

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Tomita H (2013) Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol 4:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai M, Yokoe H, Tsubuki M, Takahashi N (2019) Growth inhibition of human breast and prostate cancer cells by cinnamic acid derivatives and their mechanism of action. Biol Pharm Bull 42:1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Karatas O, Balci Yuce H, Taskan MM, Gevrek F, Alkan C, Isiker Kara G, Temiz C (2020) Cinnamic acid decreases periodontal inflammation and alveolar bone loss in experimental periodontitis. J Periodontal Res 55:676–685

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM (2019) Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 128:363–373

    Article  CAS  PubMed  Google Scholar 

  • Koch AK, Käppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan T, Yin WF, Chan KG (2012) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors (basel) 12:4016–4030

    Article  CAS  Google Scholar 

  • Lee Z, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Kong JL, Dong BY, Huang H, Wang K, Wu LH, Hou CC, Liang Y, Li B, Chen YQ (2016) Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFkappaB signal-transduction pathways. Drug Des Devel Ther 10:183–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manner S, Fallarero A (2018) Screening of natural product derivatives identifies two structurally related flavonoids as potent quorum sensing inhibitors against gram-negative bacteria. Int J Mol Sci 19:1346

    Article  PubMed Central  CAS  Google Scholar 

  • Martinelli D, Grossmann G, Séquin U, Brandl H, Bachofen R (2004) Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol 4:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  CAS  PubMed  Google Scholar 

  • McLean RJ, Pierson LSI, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir S, Shah AA, Shahid M, Manzoor I, Aslam B, Rasool MH, Saeed M, Ayaz S, Khurshid M (2020) Quorum sensing interfering strategies and their implications in the management of biofilm-associated bacterial infections. Braz Arch Biol Technol 63:e20190555

    Article  CAS  Google Scholar 

  • Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S (2020) Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 46:578–599

    Article  CAS  PubMed  Google Scholar 

  • Otero E, Robledo SM, Díaz S, Carda M, Muñoz D, Paños J, Vélez ID, Cardona W (2014) Synthesis and leishmanicidal activity of cinnamic acid esters: structure–activity relationship. Med Chem Res 23:1378–1386

    Article  CAS  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkin WH (1877) On some hydrocarbons obtained from the homologues of cinnamic acid; and on anethol and its homologues. J Chem Soc 32:660–674

    Article  Google Scholar 

  • Piewngam P, Chiou J, Chatterjee P, Otto M (2020) Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti Infect Ther 18:499–510

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161

    Article  CAS  PubMed  Google Scholar 

  • Saeki EK, Kobayashi RKT, Nakazato G (2020) Quorum sensing system: Target to control the spread of bacterial infections. Microb Pathog 142:104068

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB (2009) Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol 47:778–786

    Article  CAS  PubMed  Google Scholar 

  • Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem 12:749–767

    Article  CAS  PubMed  Google Scholar 

  • Tan LY, Yin WF, Chan KG (2013) Piper nigrum, Piper betle and Gnetum gnemon-natural food sources with anti-quorum sensing properties. Sensors (basel) 13:3975–3985

    Article  CAS  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76:243–253

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos NG, Croda J, Simionatto S (2018) Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog 120:198–203

    Article  CAS  PubMed  Google Scholar 

  • Wahman S, Emara M, Shawky RM, El-Domany RA, Aboulwafa MM (2015) Inhibition of quorum sensing-mediated biofilm formation in Pseudomonas aeruginosa by a locally isolated Bacillus cereus. J Basic Microbiol 55:1406–1416

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chu W, Ye C, Gaeta B, Tao H, Wang M, Qiu Z (2019) Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl Microbiol Biotechnol 103:903–915

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8:425

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Council of Thailand through the Annual Research Fund of Naresuan University (Grant Number R2559B069). Supports from The Thailand Research Fund (DBG6180030) and the Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DK and AS; Methodology: PJ, WP, AN; Formal analysis and investigation: PJ, WP, AN; Writing—original draft preparation: PJ, DK and AS; Writing—review and editing: DK, WP and AS; Funding acquisition: DK and AS; Supervision: DK and AS.

Corresponding author

Correspondence to Duangkamol Kunthalert.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

This study does not contain any experiments with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

All authors agreed on the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 1096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jantaruk, P., Pabuprapap, W., Nakaew, A. et al. 4-methoxybenzalacetone, the cinnamic acid analog as a potential quorum sensing inhibitor against Chromobacterium violaceum and Pseudomonas aeruginosa. World J Microbiol Biotechnol 37, 153 (2021). https://doi.org/10.1007/s11274-021-03119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03119-x

Keywords

Navigation