Skip to main content
Log in

A comparative analysis of differential N6-methyladenosine (m6A) modification between non-transgenic and LBD15 overexpressing Poplar 84 K plants

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) plays an important role in the gene expression regulation. Previously, we found an ortholog of Arabidopsis LBD15 that showed xylem preferential expression and involved in leaf development in Poplar 84 K. In order to investigate whether m6A modification affects the function of LBD15, the m6A-immunoprecipitation sequence and the matched input RNA sequence for non-transgenic plants (CK) and the LBD15 overexpression (LBD15-oe) plants were compared and analyzed. As a result, 7,156 differential m6A peaks were identified, with 2,896 upregulated m6A peaks and 4,260 downregulated m6A peaks. Correlation analysis of differential expression genes and differential m6A peaks indicated that a total of 119 differently methylated genes showed a negative correlation with the differentially expressed genes. Among them, Nudix hydrolase, LRR receptor-like serine/threonine-protein kinase, tubulin, vacuole membrane protein KMS1, and MYB family transcription factor PHL11 may be involved in the posttranscriptional gene regulation in LBD15 overexpression plants. The expression of ten m6A-modified genes was validated by qRT-PCR. Our results will provide a basis for the further elucidation of the regulatory mechanism of m6A modification and the epigenetic regulation of LBD15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study have been submitted to the SRA database under the accession number PRJNA725116.

References

  • Adams JM, Cory S (1975) Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA. Nature 2:287–294

    Google Scholar 

  • Ahmad S, Guo Y (2019) Signal transduction in leaf senescence: progress and perspective. Plants 8:405

    Article  CAS  PubMed Central  Google Scholar 

  • Albinsky D, Kusano M, Higuchi M et al (2010) Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol Plant 3:125–142

    Article  CAS  PubMed  Google Scholar 

  • Anderson SJ, Kramer MC, Gosai SJ et al (2018) N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Rep 25:1146–1157

    Article  CAS  PubMed  Google Scholar 

  • Arribas-Hernández L, Bressendorff S, Hasen MH et al (2018) An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. Plant Cell 30:952–967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  CAS  Google Scholar 

  • Beemon K, Keith J (1977) Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol 113:165–179

    Article  CAS  PubMed  Google Scholar 

  • Bell EM, Lin WC, Husbands AY et al (2012) Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci 109:21146–21151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghi L, Bureau M, Simon R (2007) Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19:1795–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  CAS  PubMed  Google Scholar 

  • Duan HC, Wei LH, Zhang C, Wang Y, Chen L, Lu Z, Chen PR, He C, Jia G (2017) ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell 29:2995–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin DT, Taylor RH (1975) The methylation state of poly A-containing-messenger RNA from cultured hamster cells. Nucleic Acids Res 2:1653–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15:293–306

    Article  CAS  PubMed  Google Scholar 

  • Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-Like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haugland RA, Cline MG (2010) Post-transcriptional modifications of oat coleoptile ribonucleic acids. 5’-Terminal capping and methylation of internal nucleosides in poly (A)-rich RNA. Eur J Biochem 104:271–277

    Article  Google Scholar 

  • Iwakawa H, Ueno Y, Semiarti E et al (2002) The ASYMMETRIC LEAVES2 Gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Fu Y, Zhao X et al (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy TD, Lane BG (1979) Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5’-terminal dinucleotide sequences in bulk poly (A)-rich RNA from imbibing wheat embryos. Can J Biochem 57:927–931

    Article  CAS  PubMed  Google Scholar 

  • Levis R, Penman S (1978) 5’-Terminal structures of poly (A) cytoplasmic messenger RNA and of poly(A) and poly(A) heterogeneous nuclear RNA of cells of the dipteran. J Mol Biol 120:487–515

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang X, Li C et al (2014) Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol 11:1180–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang S, Yu X et al (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Shao FJ, Macmillan C et al (2018) Genomewide analysis of the lateral organ boundaries domain gene family in Eucalyptus grandis reveals members that differentially impact secondary growth. Plant Biotechnol J 16:124–136

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17

  • Martínez-Pérez M, Aparicio F, López-Gresa MP, Bellés JM, Sánchez-Navarro JA, Pallás V (2017) Arabidopsis m6A de-methylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc Natl Acad Sci USA 114:10755–10766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng J, Lu Z, Liu H et al (2014) A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69:274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Jaffrey SR (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Alonso-Casajús N, Pozueta -Romero J, (2006) Cloning, expression and characterization of a Nudix hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to starch biosynthesis in Arabidopsis thaliana. Plant Cell Physiol 47:926–934

    Article  PubMed  CAS  Google Scholar 

  • Nichols JL (1979) N6-methyladenosine in maize poly (A)-containing RNA. Plant Sci Lett 15:357–361

    Article  CAS  Google Scholar 

  • Qiu D, Bai S, Ma J et al (2019) The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Res 26:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinform 26:139–140

    Article  CAS  Google Scholar 

  • Rocha EP, Danchin A, Viari A (2001) Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 11:946–958

    Article  CAS  PubMed  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scutenaire J, Deragon JM, Jean V et al (2018) The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell 30:986–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao FJ, Lu Q, Wilson IW, Qiu DY (2017) Genome-wide identification and characterization of the SPL gene family in Ziziphus jujuba. Gene 627:315–321

    Article  CAS  PubMed  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Chen D, Li X et al (2015) Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34:220–228

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Feng Z, Meng L, Zhu J, Geitmann A (2013) Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta 237:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Visvanathan A, Somasundaram K (2018) mRNA traffic control reviewed: N6-ethyladenosine (m6A) takes the driver's seat. BioEssays 40

  • Wang P, Hummel E, Osterrieder A et al (2011) KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. Plant J 66:613–628

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120

    Article  CAS  PubMed  Google Scholar 

  • Wei LH, Song P, Wang Y, Lu Z, Tang Q, Yu Q (2018) The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell 30:968–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Ji X, Guo X, Ji S (2017) Regulatory Role of N6-methyladenosine (m6A) Methylation in RNA Processing and Human Diseases. J Cell Biochem 118:2534–2543

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Mao X, Huang J et al (2011) KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322

    Article  CAS  Google Scholar 

  • Yang Y, Hsu PJ, Chen YS, Yang YG (2018) Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura K, Shigeoka S (2015) Versatile physiological functions of the Nudix hydrolase family in Arabidopsis. Biosci Biotechnol Biochem 79:354–366

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visuali-zation. Bioinform 31:2382–2383

    Article  CAS  Google Scholar 

  • Zhong S, Lin H, Bodi Z, Vespa L, Herzog M, Fray RG (2008) MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20:1278–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Song X, Wei K et al (2019) Growth-regulating factor 15 is required for leaf size control in Populus. Tree Physiol 39:381–390

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Guo J, Zhou C, Zhu J (2014) Ectopic expression of LBD15 affects lateral branch development and secondary cell wall synthesis in Arabidopsis thaliana. Plant Growth Regul 73:111–120

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Fundamental Research Funds for the Central Nonprofit Research Institution of CAF (CAFYBB2019SY006) and the National Key Research and Development Program of China (2017YFD0600205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyou Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by A. De La Torre.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 165 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, F., Sun, X., Wu, W. et al. A comparative analysis of differential N6-methyladenosine (m6A) modification between non-transgenic and LBD15 overexpressing Poplar 84 K plants. Tree Genetics & Genomes 17, 39 (2021). https://doi.org/10.1007/s11295-021-01521-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01521-y

Keywords

Navigation