Skip to main content
Log in

A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In numerical simulations, a high-fidelity (HF) simulation is generally more accurate than a low-fidelity (LF) simulation, while the latter is generally more computationally efficient than the former. To take advantages of both HF and LF simulations, a multi-fidelity surrogate (MFS) model based on moving least squares (MLS), termed as adaptive MFS-MLS, is proposed. The MFS-MLS calculates the LF scaling factors and the unknown coefficients of the discrepancy function simultaneously using an extended MLS model. In the proposed method, HF samples are not regarded as equally important in the process of constructing MFS-MLS models, and adaptive weightings are given to different HF samples. Moreover, both the size of the influence domain and the scaling factors can be determined adaptively according to the training samples. The MFS-MLS model is compared with three state-of-the-art MFS models and three single-fidelity surrogate models in terms of the prediction accuracy through multiple benchmark numerical cases and an engineering problem. In addition, the effects of key factors on the performance of the MFS-MLS model, such as the correlation between HF and LF models, the cost ratio of HF to LF samples, and the combination of HF and LF samples, are also investigated. The results show that MFS-MLS is able to provide competitive performance with high computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Absi GN, Mahadevan S (2019) Simulation and sensor optimization for multifidelity dynamics model calibration. AIAA J 58(2):879–888

    Article  Google Scholar 

  • Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircr 38(6):1093–1101

    Article  Google Scholar 

  • Bai J, Meng G, Zuo W (2019) Rollover crashworthiness analysis and optimization of bus frame for conceptual design. J Mech Sci Technol 33(7):3363–3373

    Article  Google Scholar 

  • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31

    Article  Google Scholar 

  • Batra R, Pilania G, Uberuaga BP, Ramprasad R (2019) Multifidelity information fusion with machine learning: a case study of dopant formation energies in Hafnia. ACS Appl Mater Interfaces 11(28):24906–24918

    Article  Google Scholar 

  • Berci M, Toropov VV, Hewson RW, Gaskell PH (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small UAV. Struct Multidisc Optim 50(4):683–699

    Article  Google Scholar 

  • Breitkopf P, Naceur H, Rassineux A, Villon P (2005) Moving least squares response surface approximation: formulation and metal forming applications. Comput Struct 83(17–18):1411–1428

    Article  Google Scholar 

  • Cai X, Qiu H, Gao L, Shao X (2017) Metamodeling for high dimensional design problems by multi-fidelity simulations. Struct Multidisc Optim 56(1):151–166

    Article  MathSciNet  Google Scholar 

  • Clarke SM, Griebsch JH, Simpson TW (2005) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127(6):1077–1087

    Article  Google Scholar 

  • Durantin C, Rouxel J, Désidéri JA, Glière A (2017) Multifidelity surrogate modeling based on radial basis functions. Struct Multidisc Optim 56(5):1061–1075

    Article  Google Scholar 

  • Eldred M, Giunta A, Collis S (2004) Second-order corrections for surrogate-based optimization with model hierarchies. In 10th AIAA/ISSMO multidisciplinary analysis and optimization conference.

  • Eldred MS, Giunta AA, Collis SS (2004) Second-order corrections for surrogate-based optimization with model hierarchies. Collect Tech Pap - 10th AIAA/ISSMO Multidiscip Anal Optim Conf 3:1754–1768.

  • Fang H, Horstemeyer MF (2006) Global response approximation with radial basis functions. Eng Optim 38(04):407–424

    Article  MathSciNet  Google Scholar 

  • Fernández-Godino MG, Park C, Kim NH, Haftka RT (2016) Review of multi-fidelity models. http://arxiv.org/abs/1609.07196

  • Fernández-Godino MG, Park C, Kim NH, Haftka RT (2019) Issues in deciding whether to use multifidelity surrogates. AIAA J 57(5):2039–2054

    Article  Google Scholar 

  • Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1–3):50–79

    Article  Google Scholar 

  • Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A 463(2088):3251–3269

    Article  MathSciNet  MATH  Google Scholar 

  • Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Hoboken

    Book  Google Scholar 

  • Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidisc Optim 33(3):199–216

    Article  Google Scholar 

  • Haftka RT (1991) Combining global and local approximations. AIAA J 29(9):1523–1525

    Article  Google Scholar 

  • Han ZH, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J 50(9):1885–1896

    Article  Google Scholar 

  • Han ZH, Görtz S, Zimmermann R (2013) Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp Sci Technol 25(1):177–189

    Article  Google Scholar 

  • Hao P, Feng S, Zhang K, Li Z, Wang B, Li G (2018) Adaptive gradient-enhanced kriging model for variable-stiffness composite panels using Isogeometric analysis. Struct Multidisc Optim 58(1):1–16

    Article  MathSciNet  Google Scholar 

  • Hao P, Feng S, Li Y, Wang B, Chen H (2020) Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidisc Optim 62:1–21

    Article  MathSciNet  Google Scholar 

  • Hutchison MG, Unger ER, Mason WH, Grossman B, Haftka RT (1994) Variable-complexity aerodynamic optimization of a high-speed civil transport wing. J Aircr 31(1):110–116

    Article  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodeling techniques under multiple modelling criteria. Struct Multidisc Optim 23(1):1–13

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan AG, Kaplan YA (2020) Developing of the new models in solar radiation estimation with curve fitting based on moving least-squares approximation. Renewable Energy 146:2462–2471

    Article  Google Scholar 

  • Kleijnen JP (2008) Response surface methodology for constrained simulation optimization: an overview. Simul Model Pract Theory 16(1):50–64

    Article  Google Scholar 

  • Krishnamurthy T (2005) Comparison of response surface construction methods for derivative estimation using moving least squares, kriging and radial basis functions. In 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  • Lee J, Yong SC (2011) Role of conservative moving least squares methods in reliability based design optimization: a mathematical foundation. J Mech Design 133(12):121005

    Article  Google Scholar 

  • Li J, Wang H, Kim NH (2012) Doubly weighted moving least squares and its application to structural reliability analysis. Struct Multidisc Optim 46(1):69–82

    Article  Google Scholar 

  • Liu Y, Collette M (2014) Improving surrogate-assisted variable fidelity multi-objective optimization using a clustering algorithm. Appl Soft Comput 24:482–493

    Article  Google Scholar 

  • Lü Q, Xiao ZP, Ji J, Zheng J, Shang YQ (2017) Moving least squares method for reliability assessment of rock tunnel excavation considering ground-support interaction. Comput Geotech 84:88–100

    Article  Google Scholar 

  • Mainini L, Maggiore P (2012) A Multifidelity Approach to Aerodynamic Analysis in an Integrated Design Environment. In53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA

  • Majdisova Z, Skala V (2017) Radial basis function approximations: comparison and applications. Appl Math Model 51:728–743

    Article  MathSciNet  MATH  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    MATH  Google Scholar 

  • Napier N, Sriraman SA, Tran HT, James KA (2020) An artificial neural network approach for generating high-resolution designs from low-resolution input in topology optimization. J Mech Des 142:1

    Article  Google Scholar 

  • Park C, Haftka RT, Kim NH (2018) Low-fidelity scale factor improves Bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function. Struct Multidisc Optim 58(2):399–414

    Article  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–423

    MathSciNet  MATH  Google Scholar 

  • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  • Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidisc Optim 60(3):965–981

    Article  Google Scholar 

  • Sun G, Li G, Zhou S, Xu W, Yang X, Li Q (2011) Multi-fidelity optimization for sheet metal forming process. Struct Multidisc Optim 44(1):111–124

    Article  Google Scholar 

  • Tao J, Sun G (2019) Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization. Aerosp Sci Technol 92:722–737

    Article  Google Scholar 

  • Toal DJ (2015) Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidisc Optim 51(6):1223–1245

    Article  Google Scholar 

  • Viana FA, Simpson TW, Balabanov V, Toropov V (2014) Metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J 52(4):670–690

    Article  Google Scholar 

  • Viana FA (2010) SURROGATES Toolbox User’s Guide, Version 2.1, http://sites.google.com/site/felipeacviana/surrogatestoolbox

  • Wang B (2015) A local meshless method based on moving least squares and local radial basis functions. Eng Anal Boundary Elem 50:395–401

    Article  MathSciNet  MATH  Google Scholar 

  • Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380

    Article  Google Scholar 

  • Zhang Y, Kim NH, Park C, Haftka RT (2018) Multifidelity surrogate based on single linear regression. AIAA J 56(12):4944–4952

    Article  Google Scholar 

  • Zhou Q, Shao X, Jiang P, Zhou H, Shu L (2015) An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simul Model Pract Theory 59:18–35

    Article  Google Scholar 

  • Zhou Q, Wang Y, Choi SK, Jiang P, Shao X, Hu J (2017) A sequential multi-fidelity metamodeling approach for data regression. Knowl-Based Syst 134:199–212

    Article  Google Scholar 

Download references

Funding

This research is financially supported by the National Key Research and Development Program of China (Grant No. 2018YFB1700704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguan Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The main codes and raw data are submitted as supplementary materials.

Additional information

Responsible Editor: Vassili Toropov

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the supplementary material.

Electronic supplementary material 1 (ZIP 265 kb)

Appendices

Appendix 1: 16 Test Functions

No.

HF/LF

Test functions

D

S

r 2

1

HF

\({y}_{h}={(6x-2)}^{2}\text{sin}(12x-4)\)

1

(0,1]D

0.58

LF

\({y}_{l}=0.56{y}_{h}+10\left(x-0.5\right)-5\)

2

HF

\({y}_{h}=\text{sin}\left(2\pi \left(x-0.1\right)\right)+{x}^{2}\)

1

[0,1]D

0.86

LF

\({y}_{l}=\text{sin}\left(2\pi \left(x-0.1\right)\right)\)

3

HF

\({y}_{h}=x\text{sin}\left(x\right)/10\)

1

[0,10]D

0.73

LF

\({y}_{l}=x\text{sin}\left(x\right)/10+x/10\)

4

HF

\({y}_{h}=\text{cos}(3.5\pi x)\text{exp}(-1.4x)\)

1

[0,1]D

0.75

LF

\({y}_{l}=\text{cos}\left(3.5\pi x\right)\text{exp}\left(-1.4x\right)+0.75{x}^{2}\)

5

HF

\({y}_{h}={4{x}_{1}}^{2}-{2.1x}_{1}^{4}+{{\frac{1}{3}x}_{1}^{6}+x}_{1}{x}_{2}-4{x}_{2}^{2}+4{x}_{2}^{4}\)

2

[− 2,2]D

0.77

LF

\({y}_{l}={2{x}_{1}}^{2}-{2.1x}_{1}^{4}+{{\frac{1}{3}x}_{1}^{6}+0.5x}_{1}{x}_{2}-4{x}_{2}^{2}+2{x}_{2}^{4}\)

6

HF

\(y_{h} = \left[ {x_{2} - 1.275\left( {\frac{{x_{1} }}{\pi }} \right)^{2} + 5\frac{{x_{1} }}{\pi } - 6} \right]^{2} + 10\left( {1 - \frac{1}{8\pi }} \right){\text{cos}}\left( {x_{1} } \right)\)

2

\({x}_{1}\in [-\text{5,10}]\)

\({x}_{2}\in [\text{0,15}]\)

0.98

LF

\({y}_{l}=\frac{1}{2}{[{x}_{2}-1.275{\left(\frac{{x}_{1}}{\pi }\right)}^{2}+5\frac{{x}_{1}}{\pi }-6]}^{2}+10(1-\frac{1}{8\pi })\text{cos}({x}_{1})\)

7

HF

\({y}_{h}={[1-2{x}_{1}+0.05\text{sin}(4\pi {x}_{2}-{x}_{1})]}^{2}+{[{x}_{2}-0.5\text{sin}(2\pi {x}_{1})]}^{2}\)

2

[0,1]D

0.85

LF

\({y}_{l}={[1-2{x}_{1}+0.05\text{sin}(4\pi {x}_{2}-{x}_{1})]}^{2}+4{[{x}_{2}-0.5\text{sin}(2\pi {x}_{1})]}^{2}\)

8

HF

\(y_{h} = \sum\nolimits_{i = 1}^{2} {x_{i}^{4} - 16x_{i}^{2} + 5x_{i} }\)

2

[− 3,4]D

0.83

LF

\(y_{l} = \sum\nolimits_{i = 1}^{2} {x_{i}^{4} - 16x_{i}^{2} }\)

9

HF

\({y}_{h}=\frac{1}{6}[\left(30+5{x}_{1}\text{sin}\left(5{x}_{1}\right)\right)\left(4+\text{exp}\left(-5{x}_{2}\right)\right)-100]\)

2

[0,1]D

0.88

LF

\({y}_{l}=\frac{1}{6}[\left(30+5{x}_{1}\text{sin}\left(5{x}_{1}\right)\right)\left(4+\frac{2}{5}\text{exp}\left(-5{x}_{2}\right)\right)-100]\)

10

HF

\({y}_{h}=\text{cos}({x}_{1}+{x}_{2})\text{exp}({x}_{1}{x}_{2})\)

2

[0,1]D

0.86

LF

\({y}_{l}=\text{cos}[0.6\left({x}_{1}+{x}_{2}\right)]\text{exp}(0.6{x}_{1}{x}_{2})\)

11

HF

\(y_{h} = \sum\nolimits_{i = 1}^{3} {0.3\sin \left( {\frac{16}{{15}}x_{i} - 1} \right) + \left[ {{\text{sin}}\left( {\frac{16}{{15}}x_{i} - 1} \right)} \right]^{2} }\)

3

[− 1,1]D

0.40

LF

\(y_{l} = \sum\nolimits_{i = 1}^{3} {0.3\sin \left( {\frac{16}{{15}}x_{i} - 1} \right) + 0.2\left[ {{\text{sin}}\left( {\frac{16}{{15}}x_{i} - 1} \right)} \right]^{2} }\)

12

HF

\({y}_{h}={({x}_{1}-1)}^{2}+{({x}_{1}-{x}_{2})}^{2}+{x}_{2}{x}_{3}+0.5\)

3

[0,1]D

0.69

LF

\({y}_{l}=0.2{y}_{h}-0.5{x}_{1}-0.2{x}_{1}{x}_{2}-0.1\)

13

HF

\(y_{h} = \sum\nolimits_{i = 1}^{5} {\left[ {100\left( {x_{i}^{2} - x_{i + 1} } \right)^{2} + \left( {x_{i} - 1} \right)^{2} } \right]}\)

6

[0,1]D

0.54

LF

\(y_{l} = \sum\nolimits_{i = 1}^{5} {\left[ {100\left( {x_{i}^{2} - 4x_{i + 1} } \right)^{2} + \left( {x_{i} - 1} \right)^{2} } \right]}\)

14

HF

\(y_{h} = \sum\nolimits_{i = 1}^{8} {x_{i}^{4} - 16x_{i}^{2} + 5x_{i} }\)

8

[− 3,3]D

0.74

LF

\(y_{l} = \sum\nolimits_{i = 1}^{8} {0.3x_{i}^{4} - 16x_{i}^{2} + 5x_{i} }\)

15

HF

\(y_{h} = \sum\nolimits_{{i = 1}}^{2} {\left[ {\left( {x_{{4i - 3}} + 10x_{{4i - 2}} } \right)^{2} + 5\left( {x_{{4i - 1}} - x_{{4i}} } \right)^{2} + \left( {x_{{4i - 2}} - 2x_{{4i - 1}} } \right)^{4} + 10\left( {x_{{4i - 3}} - x_{{4i}} } \right)^{4} } \right]}\)

8

[0,1]D

0.66

LF

\(y_{l} = \sum\nolimits_{{i = 1}}^{2} {\left[ {\left( {x_{{4i - 3}} + 10x_{{4i - 2}} } \right)^{2} + 125\left( {x_{{4i - 1}} - x_{{4i}} } \right)^{2} + \left( {x_{{4i - 2}} - 2x_{{4i - 1}} } \right)^{4} + 10\left( {x_{{4i - 3}} - x_{{4i}} } \right)^{4} } \right]}\)

16

HF

\(y_{h} = \sum\nolimits_{i = 1}^{10} {{\text{exp}}\left( {x_{i} } \right)\left[ {A\left( i \right) + x_{i} - {\text{ln}}\left( {\sum\nolimits_{k = 1}^{10} {{\text{exp}}\left( {x_{k} } \right)} } \right)} \right]}\)

A = [− 6.089, − 17.164, − 34.054, − 5.914, − 24.721, − 14.986, − 24.100, − 10.708, − 26.662, − 22.662, − 22.179]

10

[− 2,3]D

0.94

LF

\(y_{l} = \sum\nolimits_{i = 1}^{10} {{\text{exp}}\left( {x_{i} } \right)\left[ {B\left( i \right) + x_{i} - {\text{ln}}\left( {\sum\nolimits_{k = 1}^{10} {{\text{exp}}\left( {x_{k} } \right)} } \right)} \right]}\)

B = [− 10, − 10, − 20, − 10, − 20, − 20, − 20, − 10, − 20, − 20]

  1. Notes: D stands for the dimension of functions, S is the design space, and r2 represents the correlation of HF and LF functions

Appendix 2: Results of 16 test functions

Function

MFS-MLS

MFS-RBF

CoRBF

LR-MFS

RBF

MLS

PRS

1

0.996 ± 0.000

0.969 ± 0.052

0.987 ± 0.070

0.996 ± 0.000

0.756 ± 0.192

0.812 ± 0.157

0.250 ± 0.084

2

0.999 ± 0.010

0.999 ± 0.000

0.981 ± 0.012

0.975 ± 0.010

0.933 ± 0.048

0.956 ± 0.028

0.334 ± 0.093

3

0.994 ± 0.000

0.845 ± 0.372

0.999 ± 0.000

0.994 ± 0.000

0.572 ± 0.251

0.734 ± 0.230

0.064 ± 0.047

4

0.999 ± 0.000

0.982 ± 0.044

0.973 ± 0.024

0.966 ± 0.022

0.863 ± 0.168

0.784 ± 0.135

0.023 ± 0.015

5

0.834 ± 0.057

0.810 ± 0.045

0.677 ± 0.149

0.513 ± 0.079

0.515 ± 0.096

0.383 ± 0.206

0.666 ± 0.135

6

0.874 ± 0.047

0.883 ± 0.046

0.441 ± 0.406

0.876 ± 0.048

0.625 ± 0.152

0.523 ± 0.245

0.515 ± 0.165

7

0.960 ± 0.015

0.931 ± 0.038

0.942 ± 0.102

0.752 ± 0.065

0.815 ± 0.100

0.502 ± 0.253

0.574 ± 0.161

8

0.817 ± 0.051

0.811 ± 0.053

0.738 ± 0.332

0.817 ± 0.051

0.529 ± 0.109

0.259 ± 0.210

0.254 ± 0.120

9

0.963 ± 0.026

0.968 ± 0.012

0.974 ± 0.031

0.930 ± 0.017

0.899 ± 0.061

0.693 ± 0.270

0.916 ± 0.046

10

0.990 ± 0.010

0.970 ± 0.028

0.965 ± 0.055

0.892 ± 0.034

0.941 ± 0.058

0.935 ± 0.098

0.954 ± 0.148

11

0.928 ± 0.018

0.848 ± 0.063

0.771 ± 0.082

0.774 ± 0.063

0.911 ± 0.030

0.457 ± 0.070

0.759 ± 0.111

12

0.985 ± 0.005

0.962 ± 0.014

0.949 ± 0.070

0.858 ± 0.267

0.898 ± 0.045

0.984 ± 0.014

0.975 ± 0.046

13

0.720 ± 0.098

0.708 ± 0.050

0.427 ± 0.196

0.582 ± 0.064

0.505 ± 0.089

0.254 ± 0.197

0.483 ± 0.242

14

0.835 ± 0.019

0.820 ± 0.031

0.025 ± 0.018

0.824 ± 0.029

0.688 ± 0.069

0.452 ± 0.117

0.042 ± 0.000

15

0.975 ± 0.005

0.945 ± 0.011

0.920 ± 0.015

0.919 ± 0.013

0.932 ± 0.015

0.975 ± 0.006

0.958 ± 0.096

16

0.896 ± 0.014

0.893 ± 0.012

0.711 ± 0.013

0.892 ± 0.012

0.831 ± 0.021

0.832 ± 0.026

0.147 ± 0.071

  1. The figure before “ ± ” represents the mean of R2; the figure after “ ± ” represents the standard deviation of R2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, Y., Zhou, Q. et al. A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design. Struct Multidisc Optim 64, 3637–3652 (2021). https://doi.org/10.1007/s00158-021-03044-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03044-5

Keywords

Navigation