Skip to main content
Log in

Precipitation during creep in magnesium–aluminum alloys

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We employ a free energy density for Mg–Al alloys that is dependent on concentration, strain, and temperature, and derived from quantum mechanical calculations by Ghosh & Bhattacharya (Acta Mater 193:28–39, 2020) , to model the dynamic precipitation of the Mg\(_{17}\)Al\(_{12}\) phase during creep experiments in Mg–Al alloys. Our calculations show that the overall volume fraction of the dynamically formed precipitates is influenced by stress, and furthermore, this influence is anisotropic and asymmetric. Specifically, when the stress is volumetric or along the c-axis direction, the volume fraction of the precipitate phase is greater in compression and lower in tension. Surprisingly, stress along the a- or b-axis directions does not alter the volume fraction of the precipitates. The resistance to creep is improved by the presence of finely dispersed precipitates with a small aspect ratio, closer to spherical or ellipsoidal in shape and high number density. A greater volume fraction of these fine particles are produced during compressive creep tests than tensile creep experiments and thereby explaining the higher creep rate observed in tension than in compression in these alloys. Overall, our calculations explain the tension–compression asymmetry of the creep rate observed in creep experiments in Mg–Al alloys (Agnew et al. in Magn Technol 2000:285–290, 2000; Agnew et al. in Magn. Alloys Appl. 685–692, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Alternatively, a neural network can be used to define the mapping from strain tensor to the energy [44].

  2. We refer the reader to Ref. [45] for an exposition on third-order elastic moduli for modeling the nonlinear response of crystalline solids.

  3. This data corresponds to a die cast polycrystalline AM60B alloy, where the sub-grain microstructure consists of as cast eutectic Mg\(_{17}\)Al\(_{12}\) phase which is large sized and is surrounded by Mg solid solution. Small particles of the Mg\(_{17}\)Al\(_{12}\) were observed during service at elevated temperatures.

References

  1. Kainer, K.U., Mordike, B.L.: Magnesium alloys and their applications. Wiley-VCH Weinheim, Germany (2000)

    Book  Google Scholar 

  2. Nie, J.-F.: Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43(11), 3891–3939 (2012)

    Article  Google Scholar 

  3. Polmear, I.J.: Magnesium alloys and applications. Mater. Sci. Technol. 10(1), 1–16 (1994)

    Article  Google Scholar 

  4. Agnew, S.R., Liu, K.C., Kenik, E.A., Viswanathan, S.: Tensile and compressive creep behavior of die cast magnesium alloy am60b. Magn. Technol. 2000, 285–290 (2000)

    Google Scholar 

  5. Agnew, S.R., Viswanathan, S., Payzant, E.A., Han, Q., Liu, K.C., Kenik, E.A.: Tensile and compressive creep behavior of magnesium die casting alloys containing aluminum. In: Kainer, K.U. (Ed.) Magnesium Alloys and their Applications (2000)

  6. Nayeb-Hashemi, A.: Phase diagrams of binary magnesium alloys. ASM International, Metals Park, Ohio 44073, USA, 1988. 370 (1988)

  7. Nembach, E.: Particle strengthening of metals and alloys. Wiley, New York (1997)

  8. Nie, J.F.: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48(8), 1009–1015 (2003)

    Article  Google Scholar 

  9. Ma, X.L., Prameela, S.E., Yi, P., Fernandez, M., Krywopusk, N.M., Kecskes, L.J., Sano, T., Falk, M.L., Weihs, T.P.: Dynamic precipitation and recrystallization in mg-9wt.%Al during equal-channel angular extrusion: A comparative study to conventional aging. Acta Mater. 172, 185–199 (2019)

  10. Prameela, S.E., Yi, P., Medeiros, B., Liu, V., Kecskes, L.J., Falk, M.L., Weihs, T.P.: Deformation assisted nucleation of continuous nanoprecipitates in mg-al alloys. Materialia 9, 100583 (2020)

    Article  Google Scholar 

  11. Lloyd, J.T., Matejunas, A.J., Becker, R., Walter, T.R., Priddy, M.W., Kimberley, J.: Dynamic tensile failure of rolled magnesium: simulations and experiments quantifying the role of texture and second-phase particles. Int. J. Plast. 114, 174–195 (2019)

    Article  Google Scholar 

  12. Avedesian, M.M., Baker, H., eds.: ASM specialty handbook: magnesium and magnesium alloys. ASM Int. (1999)

  13. Caceres, C.H., Davidson, C.J., Griffiths, J.R., Newton, C.L.: Effects of solidification rate and ageing on the microstructure and mechanical properties of az91 alloy. Mater. Sci. Eng. A 325(1–2), 344–355 (2002)

    Article  Google Scholar 

  14. Maitrejean, S., Veron, M., Brechet, Y., Purdy, G.R.: Morphological instabilities in Mg-7.7 at% Al. Scr. Mater. 41(11) (1999)

  15. Nie, J.F., Xiao, X.L., Luo, C.P., Muddle, B.C.: Characterisation of precipitate phases in magnesium alloys using electron microdiffraction. Micron 32(8), 857–863 (2001)

    Article  Google Scholar 

  16. Park, S.S., You, B.S.: Low-temperature superplasticity of extruded mg-sn-al-zn alloy. Scr. Mater. 65(3), 202–205 (2011)

    Article  Google Scholar 

  17. Zhang, J., Dou, Y., Zhang, B., Luo, X.: Elevated-temperature plasticity and mechanical properties of a rare earth-modified mg-zn-al alloy. Mater. Lett. 65(6), 944–947 (2011)

    Article  Google Scholar 

  18. Máthis, K., Gubicza, J., Nam, N.H.: Microstructure and mechanical behavior of az91 mg alloy processed by equal channel angular pressing. J. Alloys Compd. 394(1–2), 194–199 (2005)

    Article  Google Scholar 

  19. Prameela, E.S., Yi, P., Falk, M.L., Weihs, T.P.: Strategic control of atomic-scale defects for tuning properties in metals. Nat. Rev. Phys. 3(3), 148–149 (2021)

    Article  Google Scholar 

  20. https://creativecommons.org/licenses/by/4.0/legalcode. Accessed from 29 Jun 2021

  21. Humble, P.: Towards a cheap creep resistant magnesium alloy. Mater. Forum 21, 45–56 (1997)

  22. Dargusch, M.S., Dunlop, G.L., Pettersen, K., Mordike, B.L., Kainer, K.U.: Magnesium alloys and their applications. In: Mordike, B.L., Kainer K.U. (Eds.), Proc. Volume sponsored by Volkswagen AG. Werkstoff-Informationsgesellschaft, Frankfurt, Germany, pages 277–282, (1998)

  23. Ghosh, S., Bhattacharya, K.: Influence of thermomechanical loads on the energetics of precipitation in magnesium aluminum alloys. Acta Mater. 193, 28–39 (2020)

    Article  ADS  Google Scholar 

  24. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  25. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  26. Jones, R.O., Gunnarsson, O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989)

    Article  ADS  Google Scholar 

  27. Kohn, W., Becke, A.D., Parr, R.G.: Density functional theory of electronic structure. J. Phys. Chem. 100(31), 12974–12980 (1996)

    Article  Google Scholar 

  28. Jones, R.O.: Density functional theory: its origins, rise to prominence, and future. Rev. Modern Phys. 87(3), 897 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ziegler, T.: Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91(5), 651–667 (1991)

    Article  Google Scholar 

  30. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  31. Gonze, X., Rignanese, G.M., Verstraete, M., Beuken, J.M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, P., Veithen, M., Raty, J.Y., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D.R., Allan, D.C.: Zeitschrift für Kristallographie, 220(5-6):558–562, (2005). \(\copyright \) 2005 Oldenbourg Wissenschaftsverlag. Published in Zeitschrift für Kristallographie and uploaded in accordance with the publisher’s self archiving policy

  32. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  33. Motamarri, P., Das, S., Rudraraju, S., Ghosh, K., Davydov, D., Gavini, V.: Dft-fe-a massively parallel adaptive finite-element code for large-scale density functional theory calculations. Comput. Phys. Commun. 246, 106853 (2020)

    Article  Google Scholar 

  34. Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52(1), 3–54 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  35. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-consistent-field calculations using chebyshev-filtered subspace iteration. J. Comput. Phys. 219(1), 172–184 (2006)

    Article  ADS  Google Scholar 

  36. Ghosh, S., Suryanarayana, P.: Sparc: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: Isolated clusters. Comput. Phys. Commun. 212, 189–204 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  37. Ghosh, S., Suryanarayana, P.: Sparc: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: Extended systems. Comput. Phys. Commun. 216, 109–125 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  38. Serebrinsky, S., Carter, E.A., Ortiz, M.: A quantum-mechanically informed continuum model of hydrogen embrittlement. J. Mech. Phys. Solids 52(10), 2403–2430 (2004)

    Article  ADS  Google Scholar 

  39. Reina, C., Marian, J., Ortiz, M.: Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals. Phys. Rev. B 84(10), 104117 (2011)

    Article  ADS  Google Scholar 

  40. Gavini, V.: Role of macroscopic deformations in energetics of vacancies in aluminum. Phys. Rev. Lett. 101(20), 205503 (2008)

    Article  ADS  Google Scholar 

  41. Gavini, V.: Role of the defect core in energetics of vacancies. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465(2110), 3239–3266 (2009)

  42. Ghosh, S., Suryanarayana, P.: Electronic structure study regarding the influence of macroscopic deformations on the vacancy formation energy in aluminum. Mech. Res. Commun. 99, 58–63 (2019)

    Article  Google Scholar 

  43. Busk, R.S.: Lattice parameters of magnesium alloys. Jom 2(12), 1460–1464 (1950)

    Article  ADS  Google Scholar 

  44. Shi Teh, Y., Ghosh, S., Bhattacharya, K.: Machine-learned prediction of the electronic fields in a crystal. arXiv preprint arXiv:2104.03831, (2021)

  45. Hearmon, R.F.S.: Third-order elastic coefficients. Acta Crystallogr. 6(4), 331–340 (1953)

    Article  MathSciNet  Google Scholar 

  46. Han, G., Han, Z., Luo, A.A., Liu, B.: Three-dimensional phase-field simulation and experimental validation of \(\beta \)-mg 17 al 12 phase precipitation in mg-al-based alloys. Metall. Mater. Trans. A 46(2), 948–962 (2015)

    Article  Google Scholar 

  47. Payzant, E.A., Agnew, S.R., Han, Q., Viswanathan, S.: Mg17al12 phase precipitation kinetics in die casting alloys az91d and am60b. Magn. Technol. 2001, 183–187 (2001)

    Google Scholar 

  48. Nikolaevich Kolmogorov, A.: On the statistical theory of the crystallization of metals. Bull. Acad. Sci. USSR Math. Ser 1(3), 355–359 (1937)

    Google Scholar 

  49. Avrami, M.: Kinetics of phase change. i general theory. J. Chem. Phys. 7(12), 1103–1112 (1939)

    Article  ADS  Google Scholar 

  50. Johnson, W.A.: Reaction kinetics in processes of nucleation and growth. Am. Inst. Min. Metal. Petro. Eng. 135, 416–458 (1939)

    Google Scholar 

  51. Ghosh, S., Bhattacharya, K.: Spectral quadrature for the first principles study of crystal defects: Application to magnesium. arXiv preprint arXiv:2011.13517, (2020)

Download references

Acknowledgements

I would like to thank Professor Kaushik Bhattacharya (California Institute of Technology) for his mentorship. I would like to acknowledge Professor Sean Agnew (University of Virginia) for bringing to my notice the experimental work related to the asymmetric creep performance of Magnesium–Aluminum alloys. I also thank the anonymous reviewers for their valuable comments and suggestions. Part of this research was performed when I had held a position at the California Institute of Technology. I gratefully acknowledge funding in part from the Army Research Laboratory under Cooperative Agreement Number W911NF-12-2-0022. Some of the computations were conducted in the Resnick High Performance Center, a facility supported by Resnick Sustainability Institute at the California Institute of Technology. This research used resources of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnava Ghosh.

Additional information

Communicated by Andreas Oechsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. Precipitation during creep in magnesium–aluminum alloys. Continuum Mech. Thermodyn. 33, 2363–2374 (2021). https://doi.org/10.1007/s00161-021-01047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01047-7

Keywords

Navigation