Skip to main content
Log in

An ensemble solver for segregated cardiovascular FSI

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Computational models are increasingly used for diagnosis and treatment of cardiovascular disease. To provide a quantitative hemodynamic understanding that can be effectively used in the clinic, it is crucial to quantify the variability in the outputs from these models due to multiple sources of uncertainty. To quantify this variability, the analyst invariably needs to generate a large collection of high-fidelity model solutions, typically requiring a substantial computational effort. In this paper, we show how an explicit-in-time ensemble cardiovascular solver offers superior performance with respect to the embarrassingly parallel solution with implicit-in-time algorithms, typical of an inner-outer loop paradigm for non-intrusive uncertainty propagation. We discuss in detail the numerics and efficient distributed implementation of a segregated FSI cardiovascular solver on both CPU and GPU systems, and demonstrate its applicability to idealized and patient-specific cardiovascular models, analyzed under steady and pulsatile flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Askes H, Nguyen D, Tyas A (2011) Increasing the critical time step: micro-inertia, inertia penalties and mass scaling. Comput Mech 47(6):657–667

    Article  Google Scholar 

  2. Ayachit U (2015) The paraview guide: a parallel visualization application. Kitware Inc, New York

    Google Scholar 

  3. Bartezzaghi A, Cremonesi M, Parolini N, Perego U (2015) An explicit dynamics GPU structural solver for thin shell finite elements. Comput Struct 154:29–40

    Article  Google Scholar 

  4. Bäumler K, Vedula V, Sailer A, Seo J, Chiu P, Mistelbauer G, Chan F, Fischbein M, Marsden A, Fleischmann D (2020) Fluid-structure interaction simulations of patient-specific aortic dissection. Biomech Model Mechanobiol 19:1602–1628

    Article  Google Scholar 

  5. Bazilevs Y, Calo V, Cottrell J, Hughes T, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1):173–201

    Article  MathSciNet  Google Scholar 

  6. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D, Smith K (2011) Cython: the best of both worlds. Comput Sci Eng 13(2):31–39. https://doi.org/10.1109/MCSE.2010.118

    Article  Google Scholar 

  7. Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: Proceedings of the conference on high performance computing networking, storage and analysis, pp 1–11

  8. Bolin D, Lindgren F (2013) A comparison between Markov approximations and other methods for large spatial data sets. Comput Stat Data Anal 61:7–21

    Article  MathSciNet  Google Scholar 

  9. Buluç A, Fineman J, Frigo M, Gilbert J, Leiserson C (2009) Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In: Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures, pp 233–244

  10. Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cárdenes R, Larrabide I, Migliavacca F (2013) Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface 10(84):20130193

    Article  Google Scholar 

  11. Chiastra C, Dubini G, Migliavacca F (2020) Modeling the stent deployment in coronary arteries and coronary bifurcations. In: Biomechanics of coronary atherosclerotic plaque. Elsevier, pp 579–597

  12. Figueroa C, Vignon-Clementel I, Jansen K, Hughes T, Taylor C (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706

    Article  MathSciNet  Google Scholar 

  13. Fiordilino J (2018) Ensemble time-stepping algorithms for the heat equation with uncertain conductivity. Numer Methods Partial Differ Equ 34(6):1901–1916

    Article  MathSciNet  Google Scholar 

  14. Garland M (2008) Sparse matrix computations on manycore GPUs. In: Proceedings of the 45th annual design automation conference, pp 2–6

  15. Greathouse J, Daga M (2014) Efficient sparse matrix-vector multiplication on GPUs using the CSR storage format. In: SC’14: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE, pp 769–780

  16. Gunzburger M, Jiang N, Wang Z (2019) An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J Numer Anal 39(3):1180–1205

    Article  MathSciNet  Google Scholar 

  17. Jansen K, Whiting C, Hulbert G (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319

    Article  MathSciNet  Google Scholar 

  18. Jiang N (2015) A higher order ensemble simulation algorithm for fluid flows. J Sci Comput 64(1):264–288

    Article  MathSciNet  Google Scholar 

  19. Jiang N (2017) A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier–Stokes equations. Numer Methods Partial Differ Equ 33(1):34–61

    Article  MathSciNet  Google Scholar 

  20. Jiang N, Layton W (2014) An algorithm for fast calculation of flow ensembles. Int J Uncertain Quantif 4(4):273–301

    Article  MathSciNet  Google Scholar 

  21. Jiang N, Layton W (2015) Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer Methods Partial Differ Equ 31(3):630–651

    Article  MathSciNet  Google Scholar 

  22. Karypis G, Kumar V (2009) MeTis: unstructured graph partitioning and sparse matrix ordering system, Version 4.0. http://www.cs.umn.edu/~metis

  23. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) Pycuda and pyopencl: a scripting-based approach to GPU run-time code generation. Parallel Comput 38(3):157–174

    Article  Google Scholar 

  24. Lan H, Updegrove A, Wilson N, Maher G, Shadden S, Marsden A (2018) A re-engineered software interface and workflow for the open-source simvascular cardiovascular modeling package. J Biomech Eng 140(2):0245011

    Article  Google Scholar 

  25. Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B (Stat Methodol) 73(4):423–498. https://doi.org/10.1111/j.1467-9868.2011.00777.x

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo Y, Wang Z (2018) An ensemble algorithm for numerical solutions to deterministic and random parabolic PDEs. SIAM J Numer Anal 56(2):859–876

    Article  MathSciNet  Google Scholar 

  27. Mohebujjaman M, Rebholz L (2017) An efficient algorithm for computation of MHD flow ensembles. Comput Methods Appl Math 17(1):121–137

    Article  MathSciNet  Google Scholar 

  28. Morlacchi S, Chiastra C, Gastaldi D, Pennati G, Dubini G, Migliavacca F (2011) Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J Biomech Eng 133(12):121010

    Article  Google Scholar 

  29. Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit, 4th edn. Kitware, New York

    Google Scholar 

  30. Seo J, Schiavazzi D, Marsden A (2019) Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels. Comput Mech. https://doi.org/10.1007/s00466-019-01678-3

  31. Stein M (2012) Interpolation of spatial data: some theory for kriging. Springer, Berlin

    Google Scholar 

  32. Stone J, Gohara D, Shi G (2010) Opencl: a parallel programming standard for heterogeneous computing systems. Comput Sci Eng 12(3):66–73

    Article  Google Scholar 

  33. Strbac V, Pierce D, Vander Sloten J, Famaey N (2017) GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations. Comput Methods Biomech Biomed Eng 20(16):1643–1657

    Article  Google Scholar 

  34. Takhirov A, Neda M, Waters J (2016) Time relaxation algorithm for flow ensembles. Numer Methods Partial Differ Equ 32(3):757–777

    Article  MathSciNet  Google Scholar 

  35. Tran J, Schiavazzi D, Kahn A, Marsden A (2019) Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Comput Methods Appl Mech Eng 345:402–428. https://doi.org/10.1016/j.cma.2018.10.024

    Article  MathSciNet  MATH  Google Scholar 

  36. Whittle P (1954) On stationary processes in the plane. Biometrika 41:434–449

    Article  MathSciNet  Google Scholar 

  37. Whittle P (1963) Stochastic-processes in several dimensions. Bull Int Stat Inst 40(2):974–994

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation award #1942662 CAREER: Bayesian Inference Networks for Model Ensembles (PI Daniele E. Schiavazzi). This research used computational resources provided through the Center for Research Computing at the University of Notre Dame. We also acknowledge support from the open source SimVascular project at www.simvascular.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele E. Schiavazzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Schiavazzi, D.E. An ensemble solver for segregated cardiovascular FSI. Comput Mech 68, 1421–1436 (2021). https://doi.org/10.1007/s00466-021-02076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02076-4

Keywords

Navigation