Skip to main content
Log in

Time Dependent Magnetohydrodynamic Flow of CuO/Al2O3/TiO2 Water Based Nanofluid along a Vertical Permeable Stretching Surface

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Time dependent magnetohydrodynamic flow of viscous incompressible CuO/Al2O3/TiO2 water based nanofluid along a vertical permeable stretching surface in the presence of external magnetic field, thermal radiation and viscous dissipation is investigated. Apart from these effects, it is assumed that the surface is saturated in porous medium. Mathematical formulation of the problem is highly nonlinear coupled partial differential equations. To obtain the solution, at first these equations are transformed into ordinary differential equations by using suitable Lie transformation, then numerical solution of this system of equations are obtained. Numerical observations are compared with the previous studies. Comparative study of effects of different parameters such as Lewis number, concentration buoyancy ratio parameter, solid volume fraction of the nanofluid, Richardson number, radiation parameter, unsteadiness parameter, permeability parameter etc. on velocity, temperature, and concentration of nanofluids have been presented through graphs. The skin friction coefficient, Nusselt number and Sherwood number at the surface are derived, discussed numerically and their numerical values are presented through tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., and Grulke, E.A., Appl. Phys. Lett., 2001, vol. 79, p. 2252.

    Article  CAS  Google Scholar 

  2. Buongiorno, J., ASME J. Heat Transfer, 2006, vol. 128, p. 240.

    Article  Google Scholar 

  3. Nada, E.A., Masoud, Z., and Hijazi, A., Int. Commun. Heat Mass, 2008, vol. 35, p. 657.

    Article  Google Scholar 

  4. Alloui, Z., Vasseur, P., and Reggio, M., Int. J. Therm. Sci., 2011, vol. 50, p. 385.

    Article  CAS  Google Scholar 

  5. Hamad, M.A.A., Int. Commun. Heat Mass, 2011, vol. 38, p. 487.

    Article  CAS  Google Scholar 

  6. Mahdy, A., Nucl. Eng. Des., 2012, vol. 249, p. 248.

    Article  CAS  Google Scholar 

  7. Uddin, M.J., Khan, W.A., and Ismail, A.I.M., Math. Probl. Eng., 2012, vol. 2012, 934964.

    Article  Google Scholar 

  8. Akbar, N.S., Nadeem, S., Haq, R.U., and Khan, Z.H., Chin. J. Aeronaut, 2013, vol. 26, p. 1389.

    Article  Google Scholar 

  9. Khan, M.S., Alam, M.M., and Ferdows, M., Procedia Eng., 2013, vol. 56, p. 316.

    Article  CAS  Google Scholar 

  10. Pal, D., Mandal, G., and Vajravelu, K., Int. J. Heat Mass Transfer, 2013, vol. 65, p. 481.

    Article  Google Scholar 

  11. Sheikholeslami, M., Hatami, M., and Ganji, D.D., Powder Technol., 2013, vol. 246, p. 327.

    Article  CAS  Google Scholar 

  12. Pal, D., Mandal, G., and Vajravelu, K., Appl. Math. Comp., 2014, vol. 238, p. 208.

    Article  Google Scholar 

  13. Freidoonimehr, N., Rashidi, M.M., and Mahmud, S., Int. J. Therm. Sci., 2015, vol. 87, p. 136.

    Article  CAS  Google Scholar 

  14. Ghadam, A.G.J. and Moradi, A., J. Part. Sci. Technol., 2015, vol. 1, p. 225.

    Google Scholar 

  15. Khan, M. and Azam, M., J. Mol. Liq., 2017, vol. 225, p. 554.

    Article  CAS  Google Scholar 

  16. Alkasmoul, F.S., Al-Asadi, M.T., Myers, T.G., Thompson, H.M., and Wilson, M.C.T., Int. J. Heat Mass Transfer, 2018, vol. 126 P, p. 639.

  17. Aleem, M., Asjad, M.I., Shaheen, A., and Khan, I., Chaos Solitons Fractals, 2020, vol. 130, 109437.

    Article  Google Scholar 

  18. Sharma, P.R., Sinha, Sharad., Yadav, R.S., and Filippov, A.N., Int. J. Heat Mass Transfer, 2018, vol. 117, p. 780.

    Article  Google Scholar 

  19. Nanoparticle Heat Transfer and Fluid Flow, Minkowycz, W.J., Sparrow, E.M., and Abraham, J.P., Eds., Boca Raton: CRC Press, 2012.

    Google Scholar 

  20. Grubka, L.J. and Bobba, K.M., J. Heat Transfer, 1985, vol. 107, p. 248.

    Article  Google Scholar 

  21. Ishak, A., Nazar, R., and Pop, I., Meccanica, 2009, vol. 44, p. 369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Filippov.

Ethics declarations

The authors declare that they have no conflict of intere-st.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Filippov, A.N. Time Dependent Magnetohydrodynamic Flow of CuO/Al2O3/TiO2 Water Based Nanofluid along a Vertical Permeable Stretching Surface. Colloid J 83, 500–512 (2021). https://doi.org/10.1134/S1061933X21040116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21040116

Navigation