Skip to main content
Log in

Salicylic acid ameliorates zinc and chromium-induced stress responses in wheat seedlings: a biochemical and computational analysis

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

The ameliorative effect of seed priming with salicylic acid (SA) on Cr6+ and Zn2+ induced stress responses in wheat (Triticum aestivum L.) was evaluated using biochemical and computational approaches. The results suggested that Cr6+ and Zn2+ stress in wheat seedlings in absence of SA priming resulted in significant inhibition of growth, biomass loss with high accumulation of reactive oxygen species (ROS) leading to oxidative stress and inactivation of antioxidant metabolism. Wheat seeds primed with SA ameliorated the effects of Cr6+ and Zn2+ induced stress by maintaining appropriate growth and biomass of the seedlings. Moreover, when compared to the SA non-primed wheat seedlings, the levels of ROS and oxidative stress load were low in SA-primed seedlings subjected to Cr6+ and Zn2+ stress, which clearly indicated an ameliorative effect of seed priming with SA. Though, significant variation of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) was not observed in wheat seedlings under stress conditions, and the non-enzymatic antioxidants such as ascorbic acid (AsA) and reduced glutathione (GSH) showed higher levels in SA-primed seedlings as compared to non-primed groups. The computational (molecular docking) analysis with Cu–Zn–SOD, Mn–SOD and CAT as target enzymes revealed that SA may potentially interfere with the binding and interaction of Cr6+ and Zn2+ ions with the active site of Cu–Zn–SOD effectively. Though, this computational analysis is based on structures of the targets derived through homology modeling, nevertheless it fundamentally substantiated our experimental findings on CAT and SOD activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ak S, Djanaguiraman M, Sudhagar R, Jayaram K, Pathmanabhan G (2004) Expression of metallothioneins 3 – like protein mRNA in sorghum cultivars under chromium (VI) stress. Curr Sci 86:901–902

    Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant responses to salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Assche FV, Clijsters H (1990) Effect of metal on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • Awate PD, Gaikwad DK (2014) Influence of growth regulators on secondary metabolites of medicinally important oil yielding plant Simarouba glauca DC. Under water stress conditions. J Stress Physiol Biochem 10:222–229

    Google Scholar 

  • Aziz MA, Ahmar HR, Corwin DL, Sabir M, Oztruk M, Hakeem KR (2016) Influence of farmyard manure on the retention and availability of nickel, zinc and lead in metal contaminated calcerous loam soil. J Environ Eng Landsc Manag 25(3):289–296

    Article  Google Scholar 

  • Barceló J, Poschenrieder C (1997) Chromium in plants. In: Carati S, Tottarelli F, Seqmi P (eds) Chromium environmental issue. Francotangati Press, Milan, pp 101–129

    Google Scholar 

  • Bassi M, Corradi MG, Realini M (1990) Effects of chromium (VI) on two fresh water plants, Lemna minor and Pistia stratiotes. 1. Morphological Observations Cytobios 62:27–38

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bezrukova MV, Sakhabutdinova R, Fathutdiniova RA, Kyldiarova I, Shakirova F (2001) The role of hormonal changes in the protective action of salicylic acid on growth of wheat seedlings under water deficit. Agrochem (russ) 2:51–54

    Google Scholar 

  • Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL repository - new features and functionality. Nucl Acid Res 45(D1):313–319

    Article  CAS  Google Scholar 

  • Borsani D, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotolin GS, Teixeira SB, de Mesquita PR, Avila GE, Carlos FS, da Silva Pedroso CE, Deuner S (2020) Seed priming with salicylic acid minimizes oxidative stress effects of aluminum on Trifolium seedlings. J Soil Sci Plant Nutr 20:2502–2511

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146(2):185–205

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Method Enzymol 2:746–778

    Google Scholar 

  • Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium (Cd) induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30(3–4): 95–110

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4): e23681

  • Choudhury S, Moulick D, Mazumder MK (2020) Secondary metabolites protect against metal and metalloid stress in rice: An in silico investigation using dehydroascorbate reductase. Acta Physiol Plant 4:3. https://doi.org/10.1007/s11738-020-03173-2

    Article  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermo-tolerance induced by salicylic acid and heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum cv: Azad) root mitochondria. Plant Cell Envirron 25:687–693

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrate formation from hydroxyl ammonium chloride: a simple assay for superoxide dismutase. Ann Biochem 70:746–778

    Article  Google Scholar 

  • Es-sbihi FZ, Hazzoumi Z, Joutei KA (2020) Effect of salicylic acid foliar application on growth, galandular hairs and essential oil yield in Salvia officinalis L. grown under zinc stress. Chem Biol Tech Agril 7: 26

  • Fiegl G, Lehotai N, Molnar A, Ordog A, Rodriguez – Reiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z (2015) Zinc induces distinct changes in metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica sp. with different sensitivity to zinc stress. Ann Bot 116(4):613–625

  • Ford KA, Casida JE, Chandran D, Gulevich AG, Okrent RA, Durkia KA, Sarpong R, Bunnelle EM, Wildermuth MC (2010) Neonicotinoid insecticides induce salicylate associated plant defense responses. Proc Nat Acad Sci USA 107(41):17527–17532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Cross talk between abiotic and biotic stress: current view from the points of convergence in stress signaling networks. Curr Opion Plant Biol 9:436–442

    Article  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul S, Altay V, Oztruk M (2019) Heavy metal stress responses in plants. Int J Env Sci Technol 16:1807–1828

    Article  CAS  Google Scholar 

  • Gill RA, Zhang N, Ali B, Farooq MA, Xu J, Gill MB, Mao B, Zhou W (2016) Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black and yellow seeded Brassica napus L. Environ Sci Pollut Res Int 23(20):20483–20496

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Meng L, Maoa P, Jia Y, Shi Y (2013) Role of exogenous salicylic acid in alleviating cadmium induced toxicity in Kentucky blue grass. Biochem Syst Ecol 50:269–276

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan S, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Env Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang YT, Cai SY, Ruan XL, Chen SY, Mei GF, Ruan GH, Cao DD (2021) Salicylic acid enhances sunflower seed germination under Zn2+ stress via involvement in Zn2+ metabolic balance and phytohormone interaction. Sci Horti 275:109702

  • Jing C, Cheng Z, Li-Ping L, Zhong-Yang S, Xue-Bo P (2007) Effect of exogenous salicylic acid on growth and H2O2 metabolizing enzyme in rice seedlings under lead stress. J Environ Sci. 19:44–49

    Article  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. Verlagsgesellschaft mbH, Weinheim, Pappelallae 3, Postfach

  • Khan MIR, Asger M, Khan NA (2013) Salicylic acid alleviates adverse effect of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid – induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Sazalai G, Popov L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium (Pelargonium × Hortorum Bailey). J Amm Soc Hort Sci 121:77–82

    Article  CAS  Google Scholar 

  • Liu Z, Ding Y, Wang F, Ye Y, Zhu C (2016) Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 35(4):719–731

    Article  CAS  PubMed  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium herd blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microb Intract 19:123–129

    Article  CAS  Google Scholar 

  • Mazumder MK, Borah A, Choudhury S (2020) Inhibitory potential of plant secondary metabolites on anti-Parkinsonian drug targets: Relevance to pathophysiology, and motor and non-motor behavioural abnormalities. Med Hypo. 137:109544

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviate copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glycoxalase system. Ecotoxicol 22:959–973

    Article  CAS  Google Scholar 

  • Mutlu S, Karadagoglu O, Atici O, Nalbantoglu B (2013) Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol Plant 57:507–513

    Article  CAS  Google Scholar 

  • Nazmul Huda AKM, Swaraz AM, Abu Reza M, Haque MA, Kabir MA (2016) Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.). Water Air Soil Pollut. 227–278

  • Nriagu JO, Neiboer E (1988) Chromium in natural and human environments. Wiley, NY

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1):95–102

    Article  CAS  Google Scholar 

  • Pasquer F, Isidore E, Zarn J, Keller B (2005) Specific patterns of changes in wheat gene expression after treatment with three antifungal compound. Plant Mol Biol 57:693–707

    Article  CAS  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Poschenrieder C, Vazquez MD, Bonet A, Barcelo J (1991) Chromium III interaction in iron sufficient and iron deficient bean plants. II Ultrastructural aspects. J Plant Nutr 14:415–428

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagisaka S (1979) The occurrence of superoxide in perennial plant, Populus gelrica. Plant Physiol 57:308–309

    Article  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stress: heavy metal induced oxidative stress and protection by mycorhization. J Exp Bot 53(372):1351–1365

    CAS  PubMed  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Jayaram K, Pathmanabhan G (2004) Expression of metallothioneins 3-like protein mRNA in sorghum cultivars under Cr (VI) stress. Curr Sci 101:7–12

  • Shi X, Dalal NS (1989) Chromium (V) and hydroxyl radical formation during glutathione reductase – catalyzed reduction of chromium (VI). Biochem Biophys Res 163:627–634

    Article  CAS  Google Scholar 

  • Sihag S, Brar B, Joshi UN (2019) Salicylic acid induces amelioration of chromium toxicity and affects antioxidant enzyme activity in Sorghum bicolor L. Int J Phytoremd 21(4):293–304

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakravarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.) Front Plant Sci 6:340

  • Singh VP, Kumar J, Singh M, Singh S, Prasad SM, Dwivedi R, Singh MPVVB (2015b) Role of salicylic acid seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regul 78:79–91

    Article  CAS  Google Scholar 

  • Singh S, Singh VP, Prasad SM, Sharma S, Ramawat N, Dubey NK, Tripathi DK, Chauhan DK (2019) Interactive effect of silicon (Si) and salicylic acid (SA) in maize seedlings and their mechanisms of cadmium (Cd) toxicity alleviation. J Plant Growth Regul 38:1587–1597

    Article  CAS  Google Scholar 

  • Thom R, Cummins I, Dixon DP, Edwards R, Cole DJ, Lapthorn AJ (2002) Structure of a Tau Class Glutathione S-Transferase from Wheat Active in Herbicide Detoxification. Biochem 41:7008

    Article  CAS  Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: A new technique for high accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  • Von Burg R, Liu D (1993) Chromium and hexavalent chromium. J Appl Toxicol 13:225–230

  • Wang DH, Li XX, Su ZK, Ren HK (2009) The role of salicylic acid in response of two rice cultivars under chilling stress. Biol Plant 53:545–552

    Article  CAS  Google Scholar 

  • Wang C, Zhang S, Wang P, Hou J, Qian J, Ao Y, Lu J, Li L (2011) Salicylic acid involved in the regulation of nutrient element uptake and oxidative stress in Vallisneria natas (Lour) Hara under Pb stress. Chemosp 84:136–142

    Article  CAS  Google Scholar 

  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017a) Salicylic to decrease plant stress. Env Chem Lett 15:101–123

    Article  CAS  Google Scholar 

  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017b) Salicylic acid to decrease plant stress. Environ Chem Lett 15:101–123

    Article  CAS  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic alleviates cadmium induced inhibition of growth and photosynthesis through up-regulating antioxidant defense systems in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Guo K, Elbza AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Env Exp Bot 65:27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our sincere thanks to Assam University, Silchar, India for providing necessary laboratory facilities to carry out the research work.

Funding

This work is not funded by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

PS, DM and SKT did the growth and biochemical experiments of the study. MKM did the computational docking analysis. SC designed the experiments, analyzed the data and wrote the manuscript along with MKM.

Corresponding author

Correspondence to Shuvasish Choudhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, M.K., Sharma, P., Moulick, D. et al. Salicylic acid ameliorates zinc and chromium-induced stress responses in wheat seedlings: a biochemical and computational analysis. CEREAL RESEARCH COMMUNICATIONS 50, 407–418 (2022). https://doi.org/10.1007/s42976-021-00201-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00201-w

Keywords

Navigation