Skip to main content
Log in

The PI3K/Akt signaling axis in Alzheimer’s disease: a valuable target to stimulate or suppress?

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Among the long list of age-related complications, Alzheimer’s disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ADDLs:

Aβ-derived diffusible ligands

APP:

Amyloid precursor protein

ARE:

Antioxidant response elements

Aβ:

Amyloid β

BDNF:

Brain-derived neurotrophic factor

CaMKII:

Ca2+/calmodulin-dependent kinase II

CK2:

Casein kinase 2

CNS:

Central nervous system

COX-1:

Cyclooxygenase-1

COX-2:

Cyclooxygenase-2

CXCL12:

C-X-C motif chemokine 12

DNA:

Deoxyribonucleic acid

eIF2-α:

Eukaryotic translation initiation factor-alpha

FGF:

Fibroblast growth factor

GABA:

γ-Aminobutyric acid

GSK-3β:

Glycogen synthase kinase-3β

HMK:

Halomethylketones 6

IGF1:

Insulin-like growth factor-1

IL1-β:

Interleukin 1 beta

iNOS:

Inducible nitric oxide synthase

IRS:

Insulin receptor substrate

LTP:

Long-term potentiation

mTOR:

Mammalian target of rapamycin

NFTs:

Neurofibrillary tangles

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

NMDA:

N-methyl-D-aspartate

Nrf2:

Nuclear factor erythroid 2

NRG1:

Neuregulin-1

NSCs:

Neurons and neural stem cells

PHF/SF:

Paired helical/straight filaments

PI3K:

Phosphatidyl inositol 3-kinase

PIP2:

Phosphotidylinositol 4,5-Bisphosphate

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PTEN:

Phosphatase and tensin homolog

PTMs:

Post-translational modifications

ROS:

Reactive oxygen specious

SH2:

Src homology 2

SODs:

Superoxide dismutase

TDZD:

Thiadiazolidinones 5

TGF-β:

Transforming growth factor β

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor alpha

References

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  • Haass C et al (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359(6393):322–325

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y et al (2013) Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 65(4):1162–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci 100(18):10417–10422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discovery 10(9):698–712

    Article  CAS  PubMed  Google Scholar 

  • Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Mietelska-Porowska A et al (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15(3):4671–4713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15(3):112–119

    Article  CAS  PubMed  Google Scholar 

  • Noble W et al (2013) The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 4:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28(10):1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Mosley RL et al (2006) Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6(5):261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., et al., Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative medicine and cellular longevity, 2017. 2017.

  • Swomley AM et al (1842) 2014 Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 8(1248):1257

    Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  • Aseervatham GSB et al (2013) Environmental factors and unhealthy lifestyle influence oxidative stress in humans—an overview. Environ Sci Pollut Res 20(7):4356–4369

    Article  Google Scholar 

  • Nizzari, M., et al., Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling. Journal of Toxicology, 2012. 2012.

  • Butterfield DA, Di Domenico F, Barone E (2014) Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochimica et Biophysica Acta BBA Molecular Basis of Disease 1842(9):1693–1706

    Article  CAS  PubMed  Google Scholar 

  • Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Lipton SA (2010) Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies. Cell Calcium 47(2):190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Lipton S (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18(9):1478–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreiro E, Oliveira CR, Pereira CM (2008) The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 30(3):331–342

    Article  CAS  PubMed  Google Scholar 

  • Hawking, Z.L., Alzheimer’s disease: the role of mitochondrial dysfunction and potential new therapies. Bioscience Horizons: The International Journal of Student Research, 2016. 9.

  • Picone, P., et al., Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy. Oxidative medicine and cellular longevity, 2014. 2014.

  • Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 63(6):2179–2184

    Article  CAS  PubMed  Google Scholar 

  • Cassidy L et al (2020) Oxidative stress in alzheimer’s disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med 49:102294

    Article  PubMed  Google Scholar 

  • Wong A et al (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920(1–2):32–40

    Article  CAS  PubMed  Google Scholar 

  • Bradley-Whitman MA, Lovell MA (2015) Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol 89(7):1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adh Migr 3(1):88–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. Journal of Alzheimer’s Disease 57(4):1105–1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34(4–5):385–397

    Article  CAS  PubMed  Google Scholar 

  • Tamagno E et al (2003) H2O2 and 4-hydroxynonenal mediate amyloid β-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp Neurol 180(2):144–155

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Boyd-Kimball D (2018) Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J Alzheimer’s Dis 62(3):1345–1367

    Article  CAS  Google Scholar 

  • Guglielmotto, M., et al., AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiology of aging, 2012. 33(1): p. 196. e13–196. e27.

  • Tamagno E et al (2012) Amyloid-β production: major link between oxidative stress and BACE1. Neurotox Res 22(3):208–219

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F et al (2017) Reactive oxygen species-mediated loss of synaptic Akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid Redox Signal 27(16):1269–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653

    Article  CAS  Google Scholar 

  • Ye L et al (2019) FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β-klotho. Exp Neurol 317:34–50

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B et al (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341

    Article  CAS  PubMed  Google Scholar 

  • Jaworski J et al (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase–Akt–mammalian target of rapamycin pathway. J Neurosci 25(49):11300–11312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V et al (2005) Regulation of dendritic morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signaling pathways. J Neurosci 25(49):11288–11299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahirovic S, Bradke F (2009) Neuronal polarity Cold Spring Harbor perspectives in biology 1(3):a001644

    PubMed  Google Scholar 

  • Hoyer S (2002) The aging brain Changes in the neuronal insulin insulin/receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD) A mini review. J Neural transm 109(78):9911002

    Google Scholar 

  • Zhao W et al (1999) Brain insulin receptors and spatial memory correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274(49):34893–34902

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2003) Control of synaptic strength, a novel function of Akt. Neuron 38(6):915–928

    Article  CAS  PubMed  Google Scholar 

  • Je HS et al (2011) Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation. Mol Brain 4(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Je H-S et al (2009) Chemically inducible inactivation of protein synthesis in genetically targeted neurons. J Neurosci 29(21):6761–6766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwood JM et al (2006) Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 23(12):3375–3384

    Article  PubMed  Google Scholar 

  • Sato A et al (2010) Regulation of neural stem/progenitor cell maintenance by PI3K and mTOR. Neurosci Lett 470(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Xu F et al (2020) Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 10:1–12

    Article  CAS  Google Scholar 

  • Bhattacharya S, Ray R, Johnson L (2005) Decreased apoptosis in polyamine depleted IEC-6 cells depends on Akt-mediated NF-κB activation but not GSK3β activity. Apoptosis 10(4):759–776

    Article  CAS  PubMed  Google Scholar 

  • Ragot K et al (2011) α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem Phys Lipid 164(6):469–478

    Article  CAS  Google Scholar 

  • Su H-C et al (2012) Glycogen synthase kinase-3β regulates anti-inflammatory property of fluoxetine. Int Immunopharmacol 14(2):150–156

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S et al (2006) Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25(19):2697–2707

    Article  CAS  PubMed  Google Scholar 

  • Li B-S et al (2001) Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21(5):1569–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke DL et al (2000) Generalized potential of adult neural stem cells. Science 288(5471):1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67(10):1348–1361

    Article  CAS  PubMed  Google Scholar 

  • Koh S-H, Lo EH (2015) The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J Clin Neurol 11(4):297–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Gambarotta G et al (2004a) ErbB4 expression in neural progenitor cells (ST14A) is necessary to mediate neuregulin-1β1-induced migration. J Biol Chem 279(47):48808–48816

    Article  CAS  PubMed  Google Scholar 

  • Gambarotta G et al (2004b) ErbB4 expression in neural progenitor cells (ST14A) is necessary to mediate neuregulin-1beta1-induced migration. J Biol Chem 279(47):48808–48816

    Article  CAS  PubMed  Google Scholar 

  • Groszer M et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294(5549):2186–2189

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (1998) The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Can Res 58(24):5667–5672

    CAS  Google Scholar 

  • Sun H et al (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3, 4, 5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci 96(11):6199–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi G et al (2011) PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun 404(4):941–945

    Article  CAS  PubMed  Google Scholar 

  • Choi, H. and S.-H. Koh, Interaction between amyloid beta toxicity and the PI3K pathway in Alzheimer’s disease. Journal of Alzheimer’s Disease, 2016. 6(5).

  • Ren Z et al (2019) Astrocytic α7 nicotinic receptor activation inhibits amyloid-β aggregation by upregulating endogenous αB-crystallin through the PI3K/Akt signaling pathway. Curr Alzheimer Res 16(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Ryu J et al (2016) Neuregulin-1 attenuates cognitive function impairments in a transgenic mouse model of Alzheimer’s disease. Cell Death Dis 7(2):e2117–e2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariga T, Donald MP, Robert KY (2008) Thematic Review Series Sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease a review. J Lipid Res 49(6):1157–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill, C., et al., Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer’s disease. 2012, Portland Press Ltd.

  • Koh S-H, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–262

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29(9):1334–1347

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heide LP et al (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94(4):1158–1166

    Article  PubMed  CAS  Google Scholar 

  • Chiu S-L, Chen C-M, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-C, Huang C-C, Hsu K-S (2011) Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology 61(4):867–879

    Article  CAS  PubMed  Google Scholar 

  • Baker LD et al (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68(1):51–57

    Article  PubMed  Google Scholar 

  • Willette AA et al (2015) Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimer’s Dement 11(5):504-510. e1

    Article  Google Scholar 

  • Biessels GJ et al (2006) Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology 5(1):64–74

    Article  PubMed  Google Scholar 

  • Copps K, White M (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55(10):2565–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong M et al (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272(40):25326–25332

    Article  CAS  PubMed  Google Scholar 

  • Park CR et al (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 68(4):509–514

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ et al (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260

    Article  CAS  PubMed  Google Scholar 

  • Decker H et al (2010) Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons. J Neurosci 30(27):9166–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice FG et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci 106(6):1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  • Caballero, B., et al., Interplay of pathogenic forms of human tau with different autophagic pathways. Aging cell, 2018. 17(1): p. e12692.

  • Wang C et al (2014a) Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol 740:312–320

    Article  CAS  PubMed  Google Scholar 

  • Caccamo A et al (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau effects on cognitive impairments. J Biol Chem 285(17):13107–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annunziata I et al (2013) Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat Commun 4(1):1–12

    Article  CAS  Google Scholar 

  • Ma T et al (2010) Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PloS one 5(9):e12845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majd S, Power JH (2018) Oxidative stress and decreased mitochondrial superoxide dismutase 2 and peroxiredoxins 1 and 4 based mechanism of concurrent activation of AMPK and mTOR in Alzheimer’s disease. Curr Alzheimer Res 15(8):764–776

    Article  CAS  PubMed  Google Scholar 

  • Chen L et al (2011) Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radical Biol Med 50(5):624–632

    Article  CAS  Google Scholar 

  • Fu SC et al (2020) Cr VI induces ROS-mediated mitochondrial dependent-apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway. Toxicology in Vitro 65:104795

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.C., et al., 7, 8-Dihydroxyflavone suppresses oxidative stress-induced base modification in DNA via induction of the repair enzyme 8-oxoguanine DNA glycosylase-1. BioMed research international, 2013. 2013.

  • Surh Y-J, Kundu JK, Na H-K (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74(13):1526–1539

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bhat HK (2012) Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis 33(12):2601–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi O (2016) Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review. BMC Neurol 16(1):1–17

    Article  CAS  Google Scholar 

  • Zhang M et al (2019) Effects of PI3K/Akt signaling pathway on serum C-reactive protein, serum amyloid A and cognitive dysfunction in mice with Alzheimer’s disease. INT J CLIN EXP MED 12(12):13437–13445

    CAS  Google Scholar 

  • Ge Q et al (2017) High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 61(10):1700134

    Article  PubMed Central  CAS  Google Scholar 

  • Koren J III et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13(4):619–630

    Article  CAS  PubMed  Google Scholar 

  • Shammas SL et al (2011) Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101(7):1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelmus MM et al (2006) Small heat shock proteins inhibit amyloid-β protein aggregation and cerebrovascular amyloid-β protein toxicity. Brain Res 1089(1):67–78

    Article  CAS  PubMed  Google Scholar 

  • Raman B et al (2005) αB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid β-peptide and β2-microglobulin. Biochem J 392(3):573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volovik Y et al (2014) Differential regulation of the heat shock factor 1 and DAF 16 by neuronal nhl 1 in the nematode C elegans. Cell reports 9(6):2192–2205

    Article  CAS  PubMed  Google Scholar 

  • Ren Z et al (2020) PNU282987 inhibits amyloid-β aggregation by upregulating astrocytic endogenous αB-crystallin and HSP-70 via regulation of the α7AChR, PI3K/Akt/HSF-1 signaling axis. Mol Med Rep 22(1):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193

    Article  PubMed  Google Scholar 

  • Swardfager W et al (2010) Tumor necrosis factor alpha. Biol Psychiatry 68:930–941

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z., et al., Nutrients, microglia aging, and brain aging. Oxidative medicine and cellular longevity, 2016. 2016.

  • Fang W et al (2017) Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264. 7 macrophages. Scientific reports 7(1):1–13

    CAS  Google Scholar 

  • Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Haslund-Vinding J et al (2017) NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 174(12):1733–1749

    Article  CAS  PubMed  Google Scholar 

  • Janyou A et al (2017) Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H-J, Koh S-H (2017) The role of PI3K/AKT pathway and its therapeutic possibility in Alzheimer’s disease. Hanyang Med Rev 37(1):18–24

    Article  CAS  Google Scholar 

  • Garza JC et al (2012) Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry 17(8):790–808

    Article  CAS  PubMed  Google Scholar 

  • Wang D et al (2012) Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J Biosci 37(1):91–101

    Article  PubMed  CAS  Google Scholar 

  • Bigalke, B., et al., Adipocytokines and CD34+ progenitor cells in Alzheimer’s disease. PloS one, 2011. 6(5): p. e20286.

  • Oomura Y et al (2006) Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides 27(11):2738–2749

    Article  CAS  PubMed  Google Scholar 

  • Harvey J, Solovyova N, Irving A (2006) Leptin and its role in hippocampal synaptic plasticity. Prog Lipid Res 45(5):369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvall A, Gallicchio V (2017) Lithium treatment in clinical medicine: history, current status and future use. J Cell Sci Ther 8(270):2

    Google Scholar 

  • Rametti A et al (2008) Lithium down-regulates tau in cultured cortical neurons: a possible mechanism of neuroprotection. Neurosci Lett 434(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Zhong J et al (2006) Lithium protects ethanol-induced neuronal apoptosis. Biochem Biophys Res Commun 350(4):905–910

    Article  CAS  PubMed  Google Scholar 

  • Forlenza OV et al (2012) Does lithium prevent Alzheimer’s disease? Drugs Aging 29(5):335–342

    Article  CAS  PubMed  Google Scholar 

  • Qian Y et al (2012) Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model. Neurochem Int 60(8):759–767

    Article  CAS  PubMed  Google Scholar 

  • Luo S et al (2012) Genistein inhibits Aβ 25–35–induced neurotoxicity in PC12 cells via PKC signaling pathway. Neurochem Res 37(12):2787–2794

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Lim JW, Kim H (2017) Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients 9(8):883

    Article  PubMed Central  CAS  Google Scholar 

  • Tsang CK et al (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discovery Today 12(3–4):112–124

    Article  CAS  PubMed  Google Scholar 

  • Nazio F et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15(4):406–416

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2014b) Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol Neurobiol 49(1):120–135

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PT, Hay N (2007) The two TORCs and AKT. Dev Cell 12(4):487–502

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Majumder, S., et al., Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PloS one, 2011. 6(9): p. e25416.

  • Dowling RJ et al (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochimica et Biophysica Acta BBA Proteins and Proteomics 1804(3):433–439

    Article  CAS  PubMed  Google Scholar 

  • Benjamin D et al (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discovery 10(11):868–880

    Article  CAS  PubMed  Google Scholar 

  • Zaytseva YY et al (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Bellozi PMQ et al (2019) NVP-BEZ235 (Dactolisib) has protective effects in a transgenic mouse model of Alzheimer’s disease. Front Pharmacol 10:1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellozi PM et al (2016) Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment. Sci Rep 6:25226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W, Teng J (2015) β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2. Int J Clin Exp Med 8(11):20658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng M et al (2016) β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res 1652:188–194

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y et al (2015) Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer’s Disease. J Neurochem 133(1):38–52

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z et al (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 33(32):13138–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song HS, Jang S, Kang SC (2018) Bavachalcone from Cullen corylifolium induces apoptosis and autophagy in HepG2 cells. Phytomedicine 40:37–47

    Article  CAS  PubMed  Google Scholar 

  • Umezawa K et al (2018) Therapeutic activity of plant-derived alkaloid conophylline on metabolic syndrome and neurodegenerative disease models. Hum Cell 31(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Song X et al (2017) Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav 179:487–493

    Article  CAS  PubMed  Google Scholar 

  • Li LS et al (2017) Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro. CNS Neurosci Ther 23(4):329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat, R., S. Budd, and J.M. Lindquist, Inhibition of GSK-3 as therapeutic strategy in disease: efficacy of AR-A014418. 2006, Wiley Online Library. p. 243–255.

  • Martinez A, Perez DI (2008) GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease? J Alzheimer’s Dis 15(2):181–191

    Article  CAS  Google Scholar 

  • Licht-Murava A et al (2016) A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Science Signaling 9(454):ra110–ra110

    Article  PubMed  CAS  Google Scholar 

  • Akhondzadeh S et al (2003) Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 28(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Shen Y et al (2011) An active fraction of Achyranthes bidentata polypeptides prevents apoptosis induced by serum deprivation in SH-SY5Y cells through activation of PI3K/AKT/Gsk3β pathways. Neurochem Res 36(11):2186–2194

    Article  CAS  PubMed  Google Scholar 

  • Durairajan SSK et al (2012) Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging 33(12):2903–2919

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2013) Puerarin stimulates proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activation. Phytomedicine 20(10):787–796

    Article  CAS  PubMed  Google Scholar 

  • Bhat RV et al (2018) The conundrum of GSK3 inhibitors: is it the dawn of a new beginning? J Alzheimer’s Dis 64(s1):S547–S554

    Article  CAS  Google Scholar 

  • Jeung, I.C., et al., Melissa officinalis L. extracts protect human retinal pigment epithelial cells against oxidative stress-induced apoptosis. International Journal of Medical Sciences, 2016. 13(2): p. 139.

  • Zhang G et al (2008) Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J Ethnopharmacol 115(3):441–448

    Article  CAS  PubMed  Google Scholar 

  • Zhou T et al (2005) Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. J Chromatogr A 1100(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Nie, X., et al., Anti-aging properties of Dendrobium nobile Lindl.: from molecular mechanisms to potential treatments. Journal of Ethnopharmacology, 2020: p. 112839.

  • Gasiorowski K et al (2011) Flavones from root of Scutellaria baicalensis Georgi: drugs of the future in neurodegeneration? CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 10(2):184–191

    CAS  Google Scholar 

  • Chen C et al (2018) Harpagoside rescues the memory impairments in chronic cerebral hypoperfusion rats by inhibiting PTEN activity. J Alzheimer’s Dis 63(2):445–455

    Article  CAS  Google Scholar 

  • Uddin M, Kabir M, Kabir T (2019) Emerging signal regulating potential of genistein against Alzheimer disease: a promising molecule of interest. Front Cell Dev Biol 7:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong N et al (2011) Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neurosci 199:292–302

    Article  CAS  Google Scholar 

  • Capiralla H et al (2012) Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 120(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Fu J et al (2012) Hypolipidemic activity in Sprague-Dawley rats and constituents of a novel natural vegetable oil from Cornus wilsoniana fruits. J Food Sci 77(8):H160–H169

    Article  CAS  PubMed  Google Scholar 

  • Hui Y et al (2018) Resveratrol attenuates the cytotoxicity induced by amyloid-β 1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem Res 43(2):297–305

    Article  PubMed  CAS  Google Scholar 

  • Wang S et al (2018) Berberine alleviates tau hyperphosphorylation and axonopathy-associated with diabetic encephalopathy via restoring PI3K/Akt/GSK3β pathway. J Alzheimer’s Dis 65(4):1385–1400

    Article  CAS  Google Scholar 

  • Lee Y-R et al (2007) Peroxisome proliferator-activated receptor γ and retinoic acid receptor synergistically up-regulate the tumor suppressor PTEN in human promyeloid leukemia cells. Int J Hematol 85(3):231–237

    Article  CAS  PubMed  Google Scholar 

  • Noh MY et al (2013) The early activation of PI3K strongly enhances the resistance of cortical neurons to hypoxic injury via the activation of downstream targets of the PI3K pathway and the normalization of the levels of PARP activity, ATP, and NAD+. Mol Neurobiol 47(2):757–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2017) TRPML1 participates in the progression of Alzheimer’s disease by regulating the PPARγ/AMPK/Mtor signalling pathway. Cell Physiol Biochem 43(6):2446–2456

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan D et al (2012) Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer 48(18):3319–3327

    Article  CAS  PubMed  Google Scholar 

  • Tramutola A, Lanzillotta C, Di Domenico F (2017) Targeting mTOR to reduce Alzheimer-related cognitive decline: from current hits to future therapies. Expert Rev Neurother 17(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Silva MC et al (2020) Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun 11(1):1–18

    Article  CAS  Google Scholar 

  • Drake, R., The importance and practical application of autophagy in human health.

  • Ahmed, A.R., et al., Directly imaging the localisation and photosensitization properties of the pan-mTOR inhibitor, AZD2014, in living cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2020. 213: p. 112055.

  • Yu, Z., et al., Relationship between adiponectin gene polymorphisms and late-onset Alzheimer’s disease. PloS one, 2015. 10(4): p. e0125186.

  • Couvineau A et al (2019) Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front Endocrinol 10:709

    Article  Google Scholar 

  • Zhao Y et al (2018) Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. BioFactors 44(6):609–618

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Shahid Beheshti University of Medical Sciences (Tehran, Iran) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Bashash.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razani, E., Pourbagheri-Sigaroodi, A., Safaroghli-Azar, A. et al. The PI3K/Akt signaling axis in Alzheimer’s disease: a valuable target to stimulate or suppress?. Cell Stress and Chaperones 26, 871–887 (2021). https://doi.org/10.1007/s12192-021-01231-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-021-01231-3

Keywords

Navigation