Skip to main content
Log in

Overexpression of miR-378 Alleviates Chronic Sciatic Nerve Injury by Targeting EZH2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In numerous studies, microRNAs (miRNAs) have been authenticated to play vital roles in the pathophysiology of neuropathic pain and other neurological diseases. In our study, we focused on evaluating miR-378 and its potential effects in neuropathic pain development, as well as the underlying molecular mechanisms. Primarily, a chronic sciatic nerve injury (CCI) rat model was established. Next, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure the expression levels of miR-378 and EZH2 mRNA; the EZH2 protein expression levels were detected by western blot. A luciferase activity assay monitored the interaction of miR-378 and EZH2. Mechanical and thermal hyperalgesia was also performed to quantitate the effects of overexpression of miR-378 or EZH2 on the CCI rats. We found that miR-378 was down-regulated in the CCI rats, and the overexpression of miR-378 produced significant relief in their pain management. EZH2 was the downstream gene of miR-378 and was negatively regulated by miR-378. The up-regulation of EZH2 reduced the inhibitory effects of miR-378 on the development of neuropathic pain in the CCI rats. miR-378 acts as an inhibitor in the progression of neuropathic pain via targeting EZH2; the miR-378/EZH2 axis may be a novel target for the diagnosis and therapy of neuropathic pain in clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

CCI:

Chronic sciatic nerve injury

qRT-PCR:

Reverse transcription-quantitative polymerase chain reaction

SNI:

Spared nerve injury

RPMI-1640:

Roswell Park memorial Institute

NC:

Negative control

PWT:

Paw withdrawal threshold

PWL:

Paw withdrawal latency

RIPA:

Radio immunoprecipitation assay

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gels

PVDF:

Poly vinylidene difluoride

SD:

Standard deviation

EZH2:

Enhancer of zeste homolog 2

PRC2:

Polycomb repressive complex 2

H3K27me3:

Mythelation of lysine 27 on histone 3

References

  1. Manners MT, Tian Y, Zhou Z, Ajit SK (2015) MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Bio 5:733–740

    Article  CAS  Google Scholar 

  2. Liu Y, Wang L, Lao J, Zhao X (2018) Changes in microRNA expression in the brachial plexus avulsion model of neuropathic pain. Int J Mol Med 41(3):1509–1517

    CAS  PubMed  Google Scholar 

  3. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662

    Article  Google Scholar 

  4. Zhang WC, Liu J, Xu X, Wang G (2013) The role of microRNAs in lung cancer progression. Med Oncol 30(3):675

    Article  CAS  Google Scholar 

  5. Guz M, Rivero-Muller A, Okon E, Stenzel-Bembenek A, Polberg K, Slomka M, Stepulak A (2014) MicroRNAs-role in lung cancer. Dis Markers 2014:218169

    Article  Google Scholar 

  6. Andersen HH, Duroux M, Gazerani P (2014) MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobio Dis 71:159–168

    Article  CAS  Google Scholar 

  7. Bao Y, Wang S, Xie Y, Jin K, Bai Y, Shan S (2018) MiR-28-5p relieves neuropathic pain by targeting Zeb1 in CCI rat models. J Cell Biochem 119(10):8555–8563

    Article  CAS  Google Scholar 

  8. Grace PM, Strand KA, Galer EL, Maier SF, Watkins LR (2018) MicroRNA-124 and microRNA-146a both attenuate persistent neuropathic pain induced by morphine in male rats. Brain Res 1692:9–11

    Article  CAS  Google Scholar 

  9. Ji LJ, Su J, Xu AL, Pang B, Huang QM (2018) MiR-134–5p attenuates neuropathic pain progression through targeting Twist1. J Cell Biochem. https://doi.org/10.1002/jcb.27486

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ji LJ, Shi J, Lu JM, Huang QM (2018) MiR-150 alleviates neuropathic pain via inhibiting toll-like receptor 5. J Cell Biochem 119(1):1017–1026

    Article  CAS  Google Scholar 

  11. Shi DN, Yuan YT, Ye D, Kang LM, Wen J, Chen HP (2018) MiR-183-5p alleviates chronic constriction injury-induced neuropathic pain through inhibition of TREK-1. Neurochem Res 43(6):1143–1149

    Article  CAS  Google Scholar 

  12. Zhan LY, Lei SQ, Zhang BH, Li WL, Wang HX, Zhao B, Cui SS, Ding H, Huang QM (2018) Overexpression of miR-381 relieves neuropathic pain development via targeting HMGB1 and CXCR4. Biomed Pharmacother 107:818–823

    Article  CAS  Google Scholar 

  13. Li L, Zhao G (2016) Downregulation of microRNA-218 relieves neuropathic pain by regulating suppressor of cytokine signaling 3. Int J Mol Med 37(3):851–858

    Article  CAS  Google Scholar 

  14. Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, Ding J, Jia L, Yuan W (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61(4):504–512

    Article  Google Scholar 

  15. Tan Y, Yang J, Xiang K, Tan Q, Guo Q (2015) Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 40(3):550–560

    Article  CAS  Google Scholar 

  16. Wang B, Yao K, Wise AF, Lau R, Shen HH, Tesch GH, Ricardo SD (2017) miR-378 reduces mesangial hypertrophy and kidney tubular fibrosis via MAPK signalling. Clin Sci (Lond) 131(5):411–423

    Article  CAS  Google Scholar 

  17. Li S, Yang F, Wang M, Cao W, Yang Z (2017) miR-378 functions as an onco-miRNA by targeting the ST7L/Wnt/beta-catenin pathway in cervical cancer. Int J Mol Med 40(4):1047–1056

    Article  CAS  Google Scholar 

  18. Peng N, Miao Z, Wang L, Liu B, Wang G, Guo X (2018) MiR-378 promotes the cell proliferation of osteosarcoma through down-regulating the expression of Kruppel-like factor 9. Biochem Cell Biol 96(5):515–521

    Article  CAS  Google Scholar 

  19. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: A TaqMan® Low Density Array study. Int J Mol Med 31(1):129–137

    Article  CAS  Google Scholar 

  20. Papale M, Ferretti E, Battaglia G, Bellavia D, Mai A, Tafani M (2018) EZH2, HIF-1, and their inhibitors: an overview on pediatric cancers. Front Pediatr 6:328

    Article  Google Scholar 

  21. Chang CJ, Hung MC (2012) The role of EZH2 in tumour progression. Br J Cancer 106(2):243–247

    Article  CAS  Google Scholar 

  22. Hwang WW, Salinas RD, Siu JJ, Kelley KW, Delgado RN, Paredes MF, Alvarez-Buylla A, Oldham MC, Lim DA (2014) Distinct and separable roles for EZH2 in neurogenic astroglia. eLife 3:e02439

    Article  Google Scholar 

  23. Yadav R, Weng HR (2017) EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 349:106–117

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  25. Kuang X, Wei C, Zhang T, Yang Z, Chi J, Wang L (2016) miR-378 inhibits cell growth and enhances apoptosis in human myelodysplastic syndromes. Int J Oncol 49(5):1921–1930

    Article  CAS  Google Scholar 

  26. Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R, Slaby O (2012) Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:55

    Article  CAS  Google Scholar 

  27. Chan JK, Kiet TK, Blansit K, Ramasubbaiah R, Hilton JF, Kapp DS, Matei D (2014) MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. Gynecol Oncol 133(3):568–574

    Article  CAS  Google Scholar 

  28. Zanutto S, Pizzamiglio S, Ghilotti M, Bertan C, Ravagnani F, Perrone F, Leo E, Pilotti S, Verderio P, Gariboldi M et al (2014) Circulating miR-378 in plasma: a reliable, haemolysis-independent biomarker for colorectal cancer. Br J Cancer 110(4):1001–1007

    Article  CAS  Google Scholar 

  29. Megiorni F, Cialfi S, McDowell HP, Felsani A, Camero S, Guffanti A, Pizer B, Clerico A, De Grazia A, Pizzuti A et al (2014) Deep Sequencing the microRNA profile in rhabdomyosarcoma reveals down-regulation of miR-378 family members. BMC Cancer 14:880

    Article  Google Scholar 

  30. Li B, Wang Y, Li S, He H, Sun F, Wang C, Lu Y, Wang X, Tao B (2015) Decreased expression of miR-378 correlates with tumor invasiveness and poor prognosis of patients with glioma. Int J Clin Exp Pathol 8(6):7016–7021

    PubMed  PubMed Central  Google Scholar 

  31. Zhou Z, Ma J (2019) miR-378 serves as a prognostic biomarker in cholangiocarcinoma and promotes tumor proliferation, migration, and invasion. Cancer Biomark 24(2):173–181

    Article  CAS  Google Scholar 

  32. Liu S, Chen L, Zeng Y, Si L, Guo X, Zhou J, Fang D, Zeng G, Jiang L (2016) Suppressed expression of miR-378 targeting gzmb in NK cells is required to control dengue virus infection. Cell Mol Immunol 13(5):700–708

    Article  CAS  Google Scholar 

  33. Chen Z, Li C, Xu Y, Li Y, Yang H, Rao L (2014) Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PloS one 9(8):e105702

    Article  Google Scholar 

  34. Yamaguchi H, Hung MC (2014) Regulation and role of EZH2 in cancer. Cancer Res Treat 46(3):209–222

    Article  CAS  Google Scholar 

  35. Zhao H, Xu Y, Mao Y, Zhang Y (2013) Effects of EZH2 gene on the growth and migration of hepatocellular carcinoma HepG2 cells. Hepatobiliary Surg Nutr 2(2):78–83

    PubMed  PubMed Central  Google Scholar 

  36. Li T, Cai J, Ding H, Xu L, Yang Q, Wang Z (2014) EZH2 participates in malignant biological behavior of epithelial ovarian cancer through regulating the expression of BRCA1. Cancer Biol Ther 15(3):271–278

    Article  Google Scholar 

  37. Coe BP, Thu KL, Aviel-Ronen S, Vucic EA, Gazdar AF, Lam S, Tsao MS, Lam WL (2013) Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PloS one 8(8):e71670

    Article  CAS  Google Scholar 

  38. Rastgoo N, Pourabdollah M, Abdi J, Reece D, Chang H (2018) Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia 32(11):2471–2482

    Article  CAS  Google Scholar 

  39. Liang J, Zhang Y, Jiang G, Liu Z, Xiang W, Chen X, Chen Z, Zhao J (2013) MiR-138 induces renal carcinoma cell senescence by targeting EZH2 and is downregulated in human clear cell renal cell carcinoma. Oncol Res 21(2):83–91

    Article  Google Scholar 

  40. Zhang K, Zhang Y, Ren K, Zhao G, Yan K, Ma B (2014) MicroRNA-101 inhibits the metastasis of osteosarcoma cells by downregulation of EZH2 expression. Oncol Rep 32(5):2143–2149

    Article  CAS  Google Scholar 

  41. Xie L, Zhang Z, Tan Z, He R, Zeng X, Xie Y, Li S, Tang G, Tang H, He X (2014) MicroRNA-124 inhibits proliferation and induces apoptosis by directly repressing EZH2 in gastric cancer. Mol Cell Biochem 392(1–2):153–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by The National Natural Science Foundation of China (No.81772044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

This study was approved by the ethics committee at Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Zeng, X., Zhang, L. et al. Overexpression of miR-378 Alleviates Chronic Sciatic Nerve Injury by Targeting EZH2. Neurochem Res 46, 3213–3221 (2021). https://doi.org/10.1007/s11064-021-03424-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03424-9

Keywords

Navigation