Skip to main content
Log in

Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer industries

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effluent generated from fertilizer plants in Paradeep in the coast of the Bay of Bengal is the major pollutant causing health hazard in the vicinity of the area with respect to plants, animals and microbes. Samples of effluent were found to contain heavy metals (mg L−1): Cr (100), Ni (36.975), Mn (68.673), Pb (20.133), Cu (74.44), Zn (176.716), Hg (5.358) and As (24.287) as analyzed by XRF. Indigenous bacterial strains were screened for chromate and multi-metal resistance to remediate the toxic pollutants. The isolated strain G1 was identified as Serratia sp. through 16S-rDNA sequence homology. The potent strain Serratia sp. GP01 treated with 100 mg L−1 of K2Cr2O7 has shown the efficacy of reducing 69.05 mg L−1 of Cr over 48 h of incubation. Further, presence of chromate reductase gene (ChR) in Serratia sp. confirmed the enzymatic reduction of Cr(VI). SEM–EDX and SEM mapping analysis revealed substantial biosorption of Cr and other heavy metals present in effluent by Serratia sp. GP01. Antioxidant enzymes such as catalase (72.15 U mL−1), SOD (57.14 U mL−1) and peroxidase (62.49 U mL−1) were found to be higher as compared to the control condition. FTIR study also revealed the role of N–H, O–H, C = C, C–H, C–O, C–N, and C = O functional groups of the cell surface of Serratia sp. treated with K2Cr2O7 and effluent from the fertilizer industry. Isolated strain Serratia sp. could be used for the detoxification of Cr(VI) and other heavy metals in fertilizer plant effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100

    Article  CAS  PubMed  Google Scholar 

  • Ashok AH, Mizuno Y, Volkow ND, Howes OD (2017) Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiat 74:511–519

    Article  Google Scholar 

  • Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, Naidu R (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. Rev Environ Contam Toxicol 178:53–91

    CAS  PubMed  Google Scholar 

  • Bagchi D, Stohs SJ, Bernard WO, Bagchi M, Preus HG (2002) Cytotoxicity and oxidative mechanism of different forms of chromium. Toxicol 180:5–22

    Article  CAS  Google Scholar 

  • Baruthio F (1992) Toxic effects of chromium and its compounds. Biol Trace Elem Res 32:145–153

    Article  CAS  PubMed  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES29 stimulated by Cu (II). Appl Microbiol Biotechnol 62:569–573

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:773–775

    Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline malondialdehyde and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotox Environ Saf 66:204–209

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr (VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121

    Article  CAS  PubMed  Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S, Badgujar H, Chauhan R, Kumar A, Dhull P, Chhokar V, Beniwal V (2018) Biosorption of heavy metals from aqueous solution by bacteria isolated from contaminated soil. Water Environ Res 90:424–430

    Article  CAS  PubMed  Google Scholar 

  • Dharmendra S, Kumar MR, Chinmayee A, Ranjan SD, Ranjan PC (2020) Assessment of marine sediment contamination and detection of their potential sources at Paradip port, East Coast of India. Res J Chem Environ 24:6

    Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr (VI) by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232:243–248

    Article  CAS  PubMed  Google Scholar 

  • Faisal M, Hasnain S (2004) Comparative study of Cr (VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol Lett 26:1623–1628

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gimeno-Garcia E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AM, Cabriales JJ, Vega MM (2010) Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland. Int J Phytoremediation 12:317–334

    Article  CAS  Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KS, Hoq MM (2011) Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Wu S, Zeng Z, Fu Z (2017) Effects of environmental pollutants on gut microbiota. Environ Pollut 222:1–9

    Article  CAS  PubMed  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69

    CAS  PubMed  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Grobe C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kalsoom A, Batool R, Jamil N (2021) Highly Cr (vi)-tolerant Staphylococcus simulans assisting chromate evacuation from tannery effluent. Green Process Synth 10:295–308

    Article  Google Scholar 

  • Khater AE (2012) Uranium and trace elements in phosphate fertilizers–Saudi Arabia. Health Phys 102:63–70

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kowalczuk D, Pitucha M (2019) Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials. Materials 12:2972

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7 molecular evolutionary genetics analysis version 7.0 for bigger dataset. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenartova V, Holovska K, Javorsky P (1998) The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiol Ecol 27:319–325

    Article  Google Scholar 

  • McLean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 2:611–619

    Article  CAS  PubMed  Google Scholar 

  • Mekki A, Sayadi S (2017) Study of heavy metal accumulation and residual toxicity in soil saturated with phosphate processing wastewater. Water Air Soil Pollut 228:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24:401–410

    Article  CAS  PubMed  Google Scholar 

  • Morgan R (2013) Soil, heavy metals, and human health. In: Brevik EC, Burgess LC (eds) Soils and human health. CRC Press, Boca Raton, pp 59–82

    Google Scholar 

  • Naik UC, Srivastava S, Thakur IS (2012) Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environ Sci Pollut Res 19:3005–3014

    Article  CAS  Google Scholar 

  • Patra RC, Malik S, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42:1857–1863

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Short contribution: chromate reduction and 16SrRNA Identification of bacteria isolated from a Cr (VI)-contaminated Site. Appl Microbiol Biotechnol 57:257–261

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH (2005) Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr Microbiol 50:266–271

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  CAS  PubMed  Google Scholar 

  • Sahoo H, Senapati D, Thakur IS, Naik UC (2020) Integrated bacteria-algal bioreactor for removal of toxic metals in acid mine drainage from iron ore mines. Bioresour Technol Rep 11:100422

    Article  Google Scholar 

  • Samuel J, Pulimi M, Paul ML, Maurya A, Chandrasekaran N, Mukherjee A (2013) Batch and continuous flow studies of adsorptive removal of Cr (VI) by adapted bacterial consortia immobilized in alginate beads. Bioresour Technol 128:423–430

    Article  CAS  PubMed  Google Scholar 

  • Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  • Sultan S, Hasnain S (2005) Chromate reduction capability of a gram positive bacterium isolated from effluent of dying industry. Bull Environ Contam Toxicol 75:699–706

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr (VI) contaminated sites. Bioresour Technol 98:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Thompson MR, Ver Berkmoes NC, Chourey K, Shah M, Thompson DK, Hettich RL (2007) Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. J Proteome Res 6:1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Article  CAS  Google Scholar 

  • Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S (2013) Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54:270–275

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Dong L, Deng P, Jia Y, Bai Q, Gao J, Xiao H (2017) Reducing capacity and enzyme activity of chromate reductase in a ChrT-engineered strain. Exp Ther Med 14:2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge SERB, Govt. of India, for financial support for developing instrumentation facilities. Financial assistance to the Centre of Excellence in Environment and Public Health by Higher Education Department of Government of Odisha under OHEPEE is also gratefully acknowledged (HE-PTC-WB-02017). We are very much thankful to the technical staffs of AIRF, JNU for SEM–EDX analysis and CIF, Institute of Life Sciences at Bhubaneswar, India for sequencing of genomic DNA.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Umesh Chandra Naik designed, wrote and reviewed the manuscript. Hrudananda Sahoo and Sushama Kumari executed the experiments, analyzed the data and wrote the manuscript. All the authors were involved in the critical review on writing the manuscript.

Corresponding author

Correspondence to Umesh Chandra Naik.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1423 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, H., Kumari, S. & Naik, U.C. Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer industries. Arch Microbiol 203, 5425–5435 (2021). https://doi.org/10.1007/s00203-021-02523-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02523-z

Keywords

Navigation