Skip to main content

Advertisement

Log in

Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jones, T. S., & Holland, E. C. (2012). Standard of care therapy for malignant glioma and its effect on tumor and stromal cells. Oncogene, 31(16), 1995–2006. https://doi.org/10.1038/onc.2011.398

    Article  CAS  PubMed  Google Scholar 

  2. Lima, F. R. S., Kahn, S. A., Soletti, R. C., Biasoli, D., Alves, T., da Fonseca, A. C. C., … Moura-Neto, V. (2012). Glioblastoma: Therapeutic challenges, what lies ahead. Biochimica Et Biophysica Acta, 1826(2), 338–349. https://doi.org/10.1016/j.bbcan.2012.05.004

  3. Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., … Gimble, J. M. (2006). Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells (Dayton, Ohio), 24(2), 376–385. https://doi.org/10.1634/stemcells.2005-0234

  4. Bexell, D., Svensson, A., & Bengzon, J. (2013). Stem cell-based therapy for malignant glioma. Cancer Treatment Reviews, 39(4), 358–365. https://doi.org/10.1016/j.ctrv.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  5. Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z., & Altaner, C. (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(1), 223–231. https://doi.org/10.1038/mt.2009.237

    Article  CAS  Google Scholar 

  6. Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S., & Altaner, C. (2007). Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Research, 67(13), 6304–6313. https://doi.org/10.1158/0008-5472.CAN-06-4024

    Article  CAS  PubMed  Google Scholar 

  7. Altanerova, V., Cihova, M., Babic, M., Rychly, B., Ondicova, K., Mravec, B., & Altaner, C. (2012). Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase: Uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. International Journal of Cancer, 130(10), 2455–2463. https://doi.org/10.1002/ijc.26278

    Article  CAS  PubMed  Google Scholar 

  8. Barcellos-de-Souza, P., Gori, V., Bambi, F., & Chiarugi, P. (2013). Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochimica Et Biophysica Acta, 1836(2), 321–335. https://doi.org/10.1016/j.bbcan.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  9. Adjei, I. M., & Blanka, S. (2015). Modulation of the tumor microenvironment for cancer treatment: A biomaterials approach. Journal of Functional Biomaterials, 6(1), 81–103. https://doi.org/10.3390/jfb6010081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fomchenko, E. I., Dougherty, J. D., Helmy, K. Y., Katz, A. M., Pietras, A., Brennan, C., … Holland, E. C. (2011). Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PloS ONE, 6(7), e20605. https://doi.org/10.1371/journal.pone.0020605

  11. Zhu, W., Huang, L., Li, Y., Qian, H., Shan, X., Yan, Y., … Xu, W.-R. (2011). Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle (Georgetown, Tex.), 10(18), 3198–3207. https://doi.org/10.4161/cc.10.18.17638

  12. Chien, L.-Y., Hsiao, J.-K., Hsu, S.-C., Yao, M., Lu, C.-W., Liu, H.-M., … Huang, D.-M. (2011). In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials, 32(12), 3275–3284. https://doi.org/10.1016/j.biomaterials.2011.01.042

  13. Giuffrida, D., Rogers, I. M., Nagy, A., Calogero, A. E., Brown, T. J., & Casper, R. F. (2009). Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Proliferation, 42(6), 788–798. https://doi.org/10.1111/j.1365-2184.2009.00640.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, B., Roh, K.-H., Park, J.-R., Lee, S.-R., Park, S.-B., Jung, J.-W., … Kang, K.-S. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(3), 289–298. https://doi.org/10.1080/14653240902807026

  15. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., … Weinberg, R. A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. https://doi.org/10.1038/nature06188

  16. De Luca, A., Lamura, L., Gallo, M., Maffia, V., & Normanno, N. (2012). Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. Journal of Cellular Biochemistry, 113(11), 3363–3370. https://doi.org/10.1002/jcb.24212

    Article  CAS  PubMed  Google Scholar 

  17. Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., … Herr, I. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99(4), 622–631. https://doi.org/10.1038/sj.bjc.6604508

  18. Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B., & Marini, F. C. (2008). The (in) auspicious role of mesenchymal stromal cells in cancer: Be it friend or foe. Cytotherapy, 10(7), 657–667. https://doi.org/10.1080/14653240802486517

    Article  CAS  PubMed  Google Scholar 

  19. Wong, R. S. Y. (2011). Mesenchymal stem cells: Angels or demons? Journal of Biomedicine & Biotechnology, 2011, 459510. https://doi.org/10.1155/2011/459510

    Article  Google Scholar 

  20. Onzi, G. R., Ledur, P. F., Hainzenreder, L. D., Bertoni, A. P. S., Silva, A. O., Lenz, G., & Wink, M. R. (2016). Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy, 18(7), 828–837. https://doi.org/10.1016/j.jcyt.2016.03.299

    Article  CAS  PubMed  Google Scholar 

  21. Iser, I. C., Ceschini, S. M., Onzi, G. R., Bertoni, A. P. S., Lenz, G., & Wink, M. R. (2016). Conditioned medium from adipose-derived stem cells (ADSCs) promotes epithelial-to-mesenchymal-like transition (EMT-Like) in glioma cells in vitro. Molecular Neurobiology, 53(10), 7184–7199. https://doi.org/10.1007/s12035-015-9585-4

    Article  CAS  PubMed  Google Scholar 

  22. Wink, M. R., Braganhol, E., Tamajusuku, A. S. K., Casali, E. A., Karl, J., Barreto-Chaves, M. L., … Battastini, A. M. O. (2003). Extracellular adenine nucleotides metabolism in astrocyte cultures from different brain regions. Neurochemistry International, 43(7), 621–628. https://doi.org/10.1016/s0197-0186(03)00094-9

  23. da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213. https://doi.org/10.1242/jcs.02932

    Article  CAS  PubMed  Google Scholar 

  24. Takano, T., Lin, J. H., Arcuino, G., Gao, Q., Yang, J., & Nedergaard, M. (2001). Glutamate release promotes growth of malignant gliomas. Nature Medicine, 7(9), 1010–1015. https://doi.org/10.1038/nm0901-1010

    Article  CAS  PubMed  Google Scholar 

  25. Morrone, F. B., Oliveira, D. L., Gamermann, P., Stella, J., Wofchuk, S., Wink, M. R., … Battastini, A. M. O. (2006). In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer, 6, 226. https://doi.org/10.1186/1471-2407-6-226

  26. Xavier, L. L., Viola, G. G., Ferraz, A. C., Da Cunha, C., Deonizio, J. M. D., Netto, C. A., & Achaval, M. (2005). A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Research. Brain Research Protocols, 16(1–3), 58–64. https://doi.org/10.1016/j.brainresprot.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  27. Azambuja, J. H., Schuh, R. S., Michels, L. R., Gelsleichter, N. E., Beckenkamp, L. R., Iser, I. C., … Braganhol, E. (2020). Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Molecular Neurobiology, 57(2), 635–649. https://doi.org/10.1007/s12035-019-01730-6

  28. Azambuja, J. H., Gelsleichter, N. E., Beckenkamp, L. R., Iser, I. C., Fernandes, M. C., Figueiró, F., … Braganhol, E. (2019). CD73 downregulation decreases in vitro and in vivo glioblastoma growth. Molecular Neurobiology, 56(5), 3260–3279. https://doi.org/10.1007/s12035-018-1240-4

  29. Braganhol, E., Zanin, R. F., Bernardi, A., Bergamin, L. S., Cappellari, A. R., Campesato, L. F., … Battastini, A. M. O. (2012). Overexpression of NTPDase2 in gliomas promotes systemic inflammation and pulmonary injury. Purinergic Signalling, 8(2), 235–243. https://doi.org/10.1007/s11302-011-9276-1

  30. Doblas, S., He, T., Saunders, D., Pearson, J., Hoyle, J., Smith, N., … Towner, R. A. (2010). Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. Journal of magnetic resonance imaging: JMRI, 32(2), 267–275. https://doi.org/10.1002/jmri.22263

  31. Gieryng, A., Pszczolkowska, D., Walentynowicz, K. A., Rajan, W. D., & Kaminska, B. (2017). Immune microenvironment of gliomas. Laboratory Investigation; A Journal of Technical Methods and Pathology, 97(5), 498–518. https://doi.org/10.1038/labinvest.2017.19

  32. Pisati, F., Belicchi, M., Acerbi, F., Marchesi, C., Giussani, C., Gavina, M., … Torrente, Y. (2007). Effect of human skin-derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal models. Cancer Research, 67(7), 3054–3063. https://doi.org/10.1158/0008-5472.CAN-06-1384

  33. Chekhonin, V. P., Baklaushev, V. P., Yusubalieva, G. M., Pavlov, K. A., Ukhova, O. V., & Gurina, O. I. (2007). Modeling and immunohistochemical analysis of C6 glioma in vivo. Bulletin of Experimental Biology and Medicine, 143(4), 501–509. https://doi.org/10.1007/s10517-007-0167-y

    Article  CAS  PubMed  Google Scholar 

  34. Wilhelmsson, U., Eliasson, C., Bjerkvig, R., & Pekny, M. (2003). Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression. Oncogene, 22(22), 3407–3411. https://doi.org/10.1038/sj.onc.1206372

    Article  CAS  PubMed  Google Scholar 

  35. Le, D. M., Besson, A., Fogg, D. K., Choi, K.-S., Waisman, D. M., Goodyer, C. G., … Yong, V. W. (2003). Exploitation of astrocytes by glioma cells to facilitate invasiveness: A mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(10), 4034–4043.

  36. Bak, X. Y., Lam, D. H., Yang, J., Ye, K., Wei, E. L. X., Lim, S. K., & Wang, S. (2011). Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Human Gene Therapy, 22(11), 1365–1377. https://doi.org/10.1089/hum.2010.212

    Article  CAS  PubMed  Google Scholar 

  37. Kucerova, L., Matuskova, M., Pastorakova, A., Tyciakova, S., Jakubikova, J., Bohovic, R., … Altaner, C. (2008). Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. The Journal of Gene Medicine, 10(10), 1071–1082. https://doi.org/10.1002/jgm.1239

  38. Stoff-Khalili, M. A., Rivera, A. A., Mathis, J. M., Banerjee, N. S., Moon, A. S., Hess, A., … Curiel, D. T. (2007). Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Research and Treatment, 105(2), 157–167. https://doi.org/10.1007/s10549-006-9449-8

  39. Guan, J., & Chen, J. (2013). Mesenchymal stem cells in the tumor microenvironment. Biomedical Reports, 1(4), 517–521. https://doi.org/10.3892/br.2013.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y., Daquinag, A., Traktuev, D. O., Amaya-Manzanares, F., Simmons, P. J., March, K. L., … Kolonin, M. G. (2009). White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Research, 69(12), 5259–5266. https://doi.org/10.1158/0008-5472.CAN-08-3444

  41. Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: New insights in signaling, development, and disease. The Journal of Cell Biology, 172(7), 973–981. https://doi.org/10.1083/jcb.200601018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thiery, J. P., & Chopin, D. (1999). Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Reviews, 18(1), 31–42. https://doi.org/10.1023/a:1006256219004

    Article  CAS  PubMed  Google Scholar 

  43. Strauss, R., Hamerlik, P., Lieber, A., & Bartek, J. (2012). Regulation of stem cell plasticity: Mechanisms and relevance to tissue biology and cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(5), 887–897. https://doi.org/10.1038/mt.2012.2

    Article  CAS  Google Scholar 

  44. Iser, I. C., Pereira, M. B., Lenz, G., & Wink, M. R. (2017). The epithelial-to-mesenchymal transition-like process in glioblastoma: An updated systematic review and in silico investigation. Medicinal Research Reviews, 37(2), 271–313. https://doi.org/10.1002/med.21408

    Article  CAS  PubMed  Google Scholar 

  45. Muehlberg, F. L., Song, Y.-H., Krohn, A., Pinilla, S. P., Droll, L. H., Leng, X., … Alt, E. U. (2009). Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis, 30(4), 589–597. https://doi.org/10.1093/carcin/bgp03

  46. Ren, G., Liu, Y., Zhao, X., Zhang, J., Zheng, B., Yuan, Z.-R., … Shi, Y. (2014). Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene, 33(30), 4016–4020. https://doi.org/10.1038/onc.2013.387

  47. Sai, B., Dai, Y., Fan, S., Wang, F., Wang, L., Li, Z., … Xiang, J. (2019). Cancer-educated mesenchymal stem cells promote the survival of cancer cells at primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death & Disease, 10(12), 941. https://doi.org/10.1038/s41419-019-2149-1

  48. Kim, E.-K., Kim, H.-J., Yang, Y.-I., Kim, J. T., Choi, M.-Y., Choi, C. S., … Cheong, S.-H. (2013). Endogenous gastric-resident mesenchymal stem cells contribute to formation of cancer stroma and progression of gastric cancer. Korean Journal of Pathology, 47(6), 507–518. https://doi.org/10.4132/KoreanJPathol.2013.47.6.507

  49. Hossain, A., Gumin, J., Gao, F., Figueroa, J., Shinojima, N., Takezaki, T., … Lang, F. F. (2015). Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells (Dayton, Ohio), 33(8), 2400–2415. https://doi.org/10.1002/stem.2053

  50. Fitzgerald, D. P., Palmieri, D., Hua, E., Hargrave, E., Herring, J. M., Qian, Y., … Steeg, P. S. (2008). Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clinical & Experimental Metastasis, 25(7), 799–810. https://doi.org/10.1007/s10585-008-9193-z

  51. Liu, J., Zhang, Y., Bai, L., Cui, X., & Zhu, J. (2012). Rat bone marrow mesenchymal stem cells undergo malignant transformation via indirect co-cultured with tumour cells. Cell Biochemistry and Function, 30(8), 650–656. https://doi.org/10.1002/cbf.2844

    Article  CAS  PubMed  Google Scholar 

  52. Røsland, G. V., Svendsen, A., Torsvik, A., Sobala, E., McCormack, E., Immervoll, H., … Schichor, C. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research, 69(13), 5331–5339. https://doi.org/10.1158/0008-5472.CAN-08-4630

  53. Pan, Q., Fouraschen, S. M. G., de Ruiter, P. E., Dinjens, W. N. M., Kwekkeboom, J., Tilanus, H. W., & van der Laan, L. J. W. (2014). Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Experimental Biology and Medicine (Maywood, N.J.), 239(1), 105–115. https://doi.org/10.1177/1535370213506802

  54. Cheng, L., Huang, Z., Zhou, W., Wu, Q., Donnola, S., Liu, J. K., … Bao, S. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell, 153(1), 139–152. https://doi.org/10.1016/j.cell.2013.02.021

  55. Zhao, Y., Chen, J., Dai, X., Cai, H., Ji, X., Sheng, Y., … Dong, J. (2017). Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression. Oncotarget, 8(61), 104418–104429. https://doi.org/10.18632/oncotarget.22301

  56. Tan, B., Shen, L., Yang, K., Huang, D., Li, X., Li, Y., … Zhu, J. (2018). C6 glioma-conditioned medium induces malignant transformation of mesenchymal stem cells: Possible role of S100B/RAGE pathway. Biochemical and Biophysical Research Communications, 495(1), 78–85. https://doi.org/10.1016/j.bbrc.2017.10.071

  57. Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., & Marini, F. C. (2016). Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research: BCR, 18(1), 84. https://doi.org/10.1186/s13058-016-0740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahn, S. Y. (2020). The role of MSCs in the tumor microenvironment and tumor progression. Anticancer Research, 40(6), 3039–3047. https://doi.org/10.21873/anticanres.14284

  59. Vakkila, J., & Lotze, M. T. (2004). Inflammation and necrosis promote tumour growth. Nature Reviews. Immunology, 4(8), 641–648. https://doi.org/10.1038/nri1415

    Article  CAS  PubMed  Google Scholar 

  60. Rong, Y., Durden, D. L., Van Meir, E. G., & Brat, D. J. (2006). “Pseudopalisading” necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. Journal of Neuropathology and Experimental Neurology, 65(6), 529–539. https://doi.org/10.1097/00005072-200606000-00001

    Article  PubMed  Google Scholar 

  61. Yee, P. P., Wei, Y., Kim, S.-Y., Lu, T., Chih, S. Y., Lawson, C., … Li, W. (2020). Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nature Communications, 11(1), 5424. https://doi.org/10.1038/s41467-020-19193-y

  62. Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. Journal of Immunology (Baltimore, Md.: 1950), 184(10), 5885–5894. https://doi.org/10.4049/jimmunol.0903143

  63. Cheng, J., Li, L., Liu, Y., Wang, Z., Zhu, X., & Bai, X. (2012). Interleukin-1α induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Molecular Medicine Reports, 6(5), 955–960. https://doi.org/10.3892/mmr.2012.1019

    Article  CAS  PubMed  Google Scholar 

  64. Montesinos, J. J., Mora-García, M. de L., Mayani, H., Flores-Figueroa, E., García-Rocha, R., Fajardo-Orduña, G. R., … Monroy-García, A. (2013). In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells and Development, 22(18), 2508–2519. https://doi.org/10.1089/scd.2013.0084

  65. Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F. M., … Knawy, B. A. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641. https://doi.org/10.1007/s12015-013-9455-2

  66. Shi, Y., Du, L., Lin, L., & Wang, Y. (2017). Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nature Reviews. Drug Discovery, 16(1), 35–52. https://doi.org/10.1038/nrd.2016.193

    Article  CAS  PubMed  Google Scholar 

  67. Brandenburg, S., Turkowski, K., Mueller, A., Radev, Y. T., Seidlitz, S., & Vajkoczy, P. (2017). Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma. Immunologic Research, 65(3), 757–768. https://doi.org/10.1007/s12026-017-8915-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Giuliano Rizzotto Guimarães, Terezinha Stein and Rosalva Thereza Meurer (Laboratório de Pesquisa em Patologia, UFCSPA) for excellent technical assistance with histological analysis and M.Sc. Cristiano Rodrigues for his assistance in animal facility. The authors also gratefully acknowledge veterinarians Drs. Fernanda Bastos de Mello and Joana Fisch for animal assistance.

Funding

APSB is recipient of PNPD fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior); MRW, GL, EB and LLX are recipients of research fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico); ICI was recipient of PDJ and LRB was recipient of DTI-B fellowship from CNPq. This study was supported by CNPq, MS-SCTIE-Decit/CNPq nº 12/2018 (441575/2018-8) and MS-SCTIE-DECIT-DGITIS-CGCIS/CNPq nº 26/2020 (442586/2020–5); and by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul—Brasil (FAPERGS/CAPES 06/2018—Programa de Internacionalização da pós-graduação no RS (19/2551-0000679-9).

Author information

Authors and Affiliations

Authors

Contributions

ICI performed cell culture, in vivo experiments, and wrote the manuscript. LRB and JHA assisted with in vivo glioma model. APSB performed RT-qPCR assays. EB contributed with the glioma model and with the interpretation of the results; FLR assisted with animal perfusions; MCF assisted with histological analysis and the interpretation of data; RCSA analyzed the pathology of gliomas; LLX contributed with GFAP immunohistochemistry quantification; PAB assisted with the statistics and interpretation of the results; MRW got and coordinate the grants, supervised the experiments, assisted in drafting and critical reading. GL supervised the experiments and assisted with critical reading. All the authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Márcia Rosângela Wink.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethics Approval

The protocols used in this study were approved by the Ethics Committee on Animal Use (CEUA) of Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), under the number 104/11, following the resolutions of the CONCEA (Conselho Nacional de Controle de Experimentação Animal). The NIH ‘‘Guide for the Care and Use of Laboratory Animals’’ (NIH publication nº 80–23, revised 1996) was followed in all experiments. The surgeries were performed with all efforts to minimize the animals suffering.

Informed Consent

The authors are alone responsible for the content and writing of the paper. All authors reviewed and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iser, I.C., Beckenkamp, L.R., Azambuja, J.H. et al. Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev and Rep 18, 1495–1509 (2022). https://doi.org/10.1007/s12015-021-10227-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10227-6

Keywords

Navigation