Skip to main content

Advertisement

Log in

Development of In Vitro Endothelialised Stents - Review -

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Autar, A., Taha, A., van Duin, R., et al. (2020). Endovascular procedures cause transient endothelial injury but do not disrupt mature neointima in Drug Eluting Stents. Scientific Reports, 10, 2173. 2020/02/09. https://doi.org/10.1038/s41598-020-58938-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Komatsu, R., Ueda, M., Naruko, T., et al. (1998). Neointimal tissue response at sites of coronary stenting in humans: Macroscopic, histological, and immunohistochemical analyses. Circulation, 98, 224–233.

    Article  CAS  PubMed  Google Scholar 

  3. Karas, S. P., Gravanis, M. B., Santoian, E. C., et al. (1992). Coronary intimal proliferation after balloon injury and stenting in swine: An animal model of restenosis. Journal of the American College of Cardiology, 20, 467–474.

    Article  CAS  PubMed  Google Scholar 

  4. Curcio, A., Torella, D., & Indolfi, C. (2011). Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: Approach to therapy. Circulation Journal: Official Journal of the Japanese Circulation Society, 75, 1287–1296.

    Article  CAS  Google Scholar 

  5. Moses, J. W., Leon, M. B., Popma, J. J., et al. (2003). Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. The New England Journal of Medicine, 349, 1315–1323. https://doi.org/10.1056/NEJMoa035071.

    Article  CAS  PubMed  Google Scholar 

  6. Morice, M. C., Serruys, P. W., Sousa, J. E., et al. (2002). A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 346, 1773–1780. https://doi.org/10.1056/NEJMoa012843.

    Article  CAS  PubMed  Google Scholar 

  7. Stone, G. W., Ellis, S. G., Cox, D. A., et al. (2004). A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. The New England Journal of Medicine, 350, 221–231. https://doi.org/10.1056/NEJMoa032441.

    Article  CAS  PubMed  Google Scholar 

  8. Claessen, B. E., Henriques, J. P., Jaffer, F. A., et al. (2014). Stent thrombosis: A clinical perspective. JACC: Cardiovascular Interventions, 7, 1081–1092. 2014/10/25. https://doi.org/10.1016/j.jcin.2014.05.016.

    Article  PubMed  Google Scholar 

  9. Tovar Forero, M. N., Zanchin, T., Masdjedi, K., et al. (2020). Incidence and predictors of outcomes after a first definite coronary stent thrombosis. EuroIntervention : Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 16, e344–e350. 2019/09/03. https://doi.org/10.4244/EIJ-D-19-00219.

    Article  Google Scholar 

  10. Luscher, T. F., Steffel, J., Eberli, F. R., et al. (2007). Drug-eluting stent and coronary thrombosis: Biological mechanisms and clinical implications. Circulation, 115, 1051–1058. https://doi.org/10.1161/CIRCULATIONAHA.106.675934.

    Article  PubMed  Google Scholar 

  11. Kalra, A., Rehman, H., Khera, S., et al. (2017). New-Generation Coronary Stents: Current Data and Future Directions. Current Atherosclerosis Reports, 19, 14. https://doi.org/10.1007/s11883-017-0654-1.

    Article  PubMed  Google Scholar 

  12. Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: What have we learned and where are we going? The Andreas Gruntzig Lecture ESC 2014. European Heart Journal, 36, 3320–3331. https://doi.org/10.1093/eurheartj/ehv511.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Otsuka, F., Byrne, R. A., Yahagi, K., et al. (2015). Neoatherosclerosis: Overview of histopathologic findings and implications for intravascular imaging assessment. European Heart Journal, 36, 2147–2159. https://doi.org/10.1093/eurheartj/ehv205.

    Article  PubMed  Google Scholar 

  14. De Caterina, A. R., Cuculi, F., & Banning, A. P. (2013). Incidence, predictors and management of left main coronary artery stent restenosis: A comprehensive review in the era of drug-eluting stents. EuroIntervention : Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 8, 1326–1334. https://doi.org/10.4244/EIJV8I11A201.

    Article  Google Scholar 

  15. Kubo, S., Kadota, K., Sabbah, M., et al. (2014). Clinical and angiographic outcomes after drug-eluting stent implantation with triple-kissing-balloon technique for left main trifurcation lesion: Comparison of single-stent and multi-stent procedures. The Journal of Invasive Cardiology, 26, 571–578.

    PubMed  Google Scholar 

  16. Lam, M. K., Sen, H., van Houwelingen, K. G., et al. (2015). Three-year clinical outcome of patients with bifurcation treatment with second-generation Resolute and Xience V stents in the randomized TWENTE trial. American Heart Journal, 169, 69–77. https://doi.org/10.1016/j.ahj.2014.10.011.

    Article  PubMed  Google Scholar 

  17. Wiemer, M., Stoikovic, S., Samol, A., et al. (2017). Third generation drug eluting stent (DES) with biodegradable polymer in diabetic patients: 5 years follow-up. Cardiovascular Diabetology, 16, 23. https://doi.org/10.1186/s12933-017-0500-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European Heart Journal, 2020 2020/08/30. https://doi.org/10.1093/eurheartj/ehaa575.

  19. Mehran, R., Pocock, S. J., Nikolsky, E., et al. (2010). A risk score to predict bleeding in patients with acute coronary syndromes. Journal of the American College of Cardiology, 55, 2556–2566. https://doi.org/10.1016/j.jacc.2009.09.076.

    Article  PubMed  Google Scholar 

  20. Sadjadieh, G., Engstrom, T., Hofsten, D. E., et al. (2018). Bleeding Events After ST-segment Elevation Myocardial Infarction in Patients Randomized to an All-comer Clinical Trial Compared With Unselected Patients. The American Journal of Cardiology, 122, 1287–1296. 2018/08/18. https://doi.org/10.1016/j.amjcard.2018.07.008.

    Article  PubMed  Google Scholar 

  21. Desai, N. R., Kennedy, K. F., Cohen, D. J., et al. (2017). Contemporary risk model for inhospital major bleeding for patients with acute myocardial infarction: The acute coronary treatment and intervention outcomes network (ACTION) registry(R)-Get With The Guidelines (GWTG)(R). American Heart Journal, 194, 16–24. 2017/12/11. https://doi.org/10.1016/j.ahj.2017.08.004.

    Article  PubMed  Google Scholar 

  22. Thiele, H., Akin, I., Sandri, M., et al. (2017). PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. The New England Journal of Medicine, 377, 2419–2432. 2017/10/31. https://doi.org/10.1056/NEJMoa1710261.

    Article  PubMed  Google Scholar 

  23. Danchin, N., Lettino, M., Zeymer, U., et al. (2016). Use, patient selection and outcomes of P2Y12 receptor inhibitor treatment in patients with STEMI based on contemporary European registries. European Heart Journal - Cardiovascular Pharmacotherapy, 2, 152–167. 2016/08/18. https://doi.org/10.1093/ehjcvp/pvw003.

    Article  PubMed  Google Scholar 

  24. Cassese, S., Byrne, R. A., Ndrepepa, G., et al. (2015). Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: A meta-analysis of randomised controlled trials. Lancet. https://doi.org/10.1016/S0140-6736(15)00979-4.

  25. Raber, L., Brugaletta, S., Yamaji, K., et al. (2015). Very Late Scaffold Thrombosis: Intracoronary Imaging and Histopathological and Spectroscopic Findings. Journal of the American College of Cardiology, 66, 1901–1914. https://doi.org/10.1016/j.jacc.2015.08.853.

    Article  CAS  PubMed  Google Scholar 

  26. Otsuka, F., Finn, A. V., Yazdani, S. K., et al. (2012). The importance of the endothelium in atherothrombosis and coronary stenting. Nature Reviews Cardiology, 9, 439–453. https://doi.org/10.1038/nrcardio.2012.64.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, S., Malhotra, A., Zhang, L., et al. (2010). Human umbilical cord blood endothelial progenitor cells decrease vein graft neointimal hyperplasia in SCID mice. Atherosclerosis, 212, 63–69. https://doi.org/10.1016/j.atherosclerosis.2010.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schatz, R. A., Palmaz, J. C., Tio, F. O., et al. (1987). Balloon-expandable intracoronary stents in the adult dog. Circulation, 76, 450–457.

    Article  CAS  PubMed  Google Scholar 

  29. Bush Jr., H. L., Jakubowski, J. A., Sentissi, J. M., et al. (1987). Neointimal hyperplasia occurring after carotid endarterectomy in a canine model: Effect of endothelial cell seeding vs. perioperative aspirin. Journal of Vascular Surgery, 5, 118–125.

    Article  PubMed  Google Scholar 

  30. Thompson, M. M., Budd, J. S., Eady, S. L., et al. (1994). The effect of transluminal endothelial seeding on myointimal hyperplasia following angioplasty. European Journal of Vascular Surgery, 8, 423–434.

    Article  CAS  PubMed  Google Scholar 

  31. Kipshidze, N., Ferguson 3rd, J. J., Keelan Jr., M. H., et al. (2000). Endoluminal reconstruction of the arterial wall with endothelial cell/glue matrix reduces restenosis in an atherosclerotic rabbit. Journal of the American College of Cardiology, 36, 1396–1403.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson, M. M., Budd, J. S., Eady, S. L., et al. (1993). Effect of seeding time and density on endothelial cell attachment to damaged vascular surfaces. The British Journal of Surgery, 80, 359–362.

    Article  CAS  PubMed  Google Scholar 

  33. Conte, M. S., VanMeter, G. A., Akst, L. M., et al. (2002). Endothelial cell seeding influences lesion development following arterial injury in the cholesterol-fed rabbit. Cardiovascular Research, 53, 502–511.

    Article  CAS  PubMed  Google Scholar 

  34. Herring, M., Gardner, A., & Glover, J. (1978). A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery, 84, 498–504.

    CAS  PubMed  Google Scholar 

  35. Graham, L. M., Vinter, D. W., Ford, J. W., et al. (1980). Endothelial cell seeding of prosthetic vascular grafts: Early experimental studies with cultured autologous canine endothelium. Archives of Surgery, 115, 929–933.

    Article  CAS  PubMed  Google Scholar 

  36. Zilla, P., Fasol, R., Preiss, P., et al. (1989). Use of fibrin glue as a substrate for in vitro endothelialization of PTFE vascular grafts. Surgery, 105, 515–522.

    CAS  PubMed  Google Scholar 

  37. Laube, H. R., Duwe, J., Rutsch, W., et al. (2000). Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. The Journal of Thoracic and Cardiovascular Surgery, 120, 134–141. https://doi.org/10.1067/mtc.2000.106327.

    Article  CAS  PubMed  Google Scholar 

  38. Deutsch, M., Meinhart, J., Fischlein, T., et al. (1999). Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery, 126, 847–855.

    Article  CAS  PubMed  Google Scholar 

  39. Vartanian, S. M., Johnston, P. C., Walker, J. P., et al. (2013). Clinical consequence of bare metal stent and stent graft failure in femoropopliteal occlusive disease. Journal of Vascular Surgery, 58, 1525–1531. https://doi.org/10.1016/j.jvs.2013.05.094.

    Article  PubMed  Google Scholar 

  40. Hirschi, K. K., Ingram, D. A., & Yoder, M. C. (2008). Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1584–1595. https://doi.org/10.1161/ATVBAHA.107.155960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basile, D. P., & Yoder, M. C. (2014). Circulating and tissue resident endothelial progenitor cells. Journal of Cellular Physiology, 229, 10–16. https://doi.org/10.1002/jcp.24423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Q. L., Huang, N., Chen, C., et al. (2010). Oriented immobilization of anti-CD34 antibody on titanium surface for self-endothelialization induction. Journal of Biomedical Materials Research Part A, 94, 1283–1293. https://doi.org/10.1002/jbm.a.32812.

    Article  CAS  PubMed  Google Scholar 

  43. Sedaghat, A., Sinning, J. M., Paul, K., et al. (2013). First in vitro and in vivo results of an anti-human CD133-antibody coated coronary stent in the porcine model. Clinical Research in Cardiology : Official Journal of the German Cardiac Society, 102, 413–425. https://doi.org/10.1007/s00392-013-0547-4.

    Article  CAS  Google Scholar 

  44. Lee, J. M., Choe, W., Kim, B. K., et al. (2012). Comparison of endothelialization and neointimal formation with stents coated with antibodies against CD34 and vascular endothelial-cadherin. Biomaterials, 33, 8917–8927. https://doi.org/10.1016/j.biomaterials.2012.08.066.

    Article  CAS  PubMed  Google Scholar 

  45. Markway, B. D., McCarty, O. J., Marzec, U. M., et al. (2008). Capture of flowing endothelial cells using surface-immobilized anti-kinase insert domain receptor antibody. Tissue Engineering Part C, Methods, 14, 97–105. https://doi.org/10.1089/ten.tec.2007.0300.

    Article  CAS  PubMed  Google Scholar 

  46. Wei, Y., Ji, Y., Xiao, L. L., et al. (2013). Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials, 34, 2588–2599. https://doi.org/10.1016/j.biomaterials.2012.12.036.

    Article  CAS  PubMed  Google Scholar 

  47. Ceylan, H., Tekinay, A. B., & Guler, M. O. (2011). Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials, 32, 8797–8805. https://doi.org/10.1016/j.biomaterials.2011.08.018.

    Article  CAS  PubMed  Google Scholar 

  48. Li, Q., Wang, Z., Zhang, S., et al. (2013). Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture. Materials Science & Engineering. C, Materials for Biological Applications, 33, 1646–1653. https://doi.org/10.1016/j.msec.2012.12.074.

    Article  CAS  Google Scholar 

  49. Blindt, R., Vogt, F., Astafieva, I., et al. (2006). A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology, 47, 1786–1795. https://doi.org/10.1016/j.jacc.2005.11.081.

    Article  CAS  PubMed  Google Scholar 

  50. Kyrtatos, P. G., Lehtolainen, P., Junemann-Ramirez, M., et al. (2009). Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC: Cardiovascular Interventions, 2, 794–802. https://doi.org/10.1016/j.jcin.2009.05.014.

    Article  PubMed  Google Scholar 

  51. Hoffmann, J., Paul, A., Harwardt, M., et al. (2008). Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. Journal of Biomedical Materials Research Part A, 84, 614–621. https://doi.org/10.1002/jbm.a.31309.

    Article  CAS  PubMed  Google Scholar 

  52. Strahm, Y., Flueckiger, A., Billinger, M., et al. (2010). Endothelial-cell-binding aptamer for coating of intracoronary stents. The Journal of Invasive Cardiology, 22, 481–487.

    PubMed  Google Scholar 

  53. Klomp, M., Beijk, M. A., Varma, C., et al. (2011). 1-year outcome of TRIAS HR (TRI-stent adjudication study-high risk of restenosis) a multicenter, randomized trial comparing genous endothelial progenitor cell capturing stents with drug-eluting stents. JACC: Cardiovascular Interventions, 4, 896–904. https://doi.org/10.1016/j.jcin.2011.05.011.

    Article  PubMed  Google Scholar 

  54. Yeh, E. T., Zhang, S., Wu, H. D., et al. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108, 2070–2073. https://doi.org/10.1161/01.CIR.0000099501.52718.70.

    Article  PubMed  Google Scholar 

  55. Lewandowska, K., Kaplan, D., & Husel, W. (2003). CD34 expression on platelets. Platelets, 14, 83–87. https://doi.org/10.1080/0953710031000080577.

    Article  PubMed  Google Scholar 

  56. Yoder, M. C., Mead, L. E., Prater, D., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109, 1801–1809. https://doi.org/10.1182/blood-2006-08-043471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wendel, H. P., Avci-Adali, M., & Ziemer, G. (2010). Endothelial progenitor cell capture stents--hype or hope? International Journal of Cardiology, 145, 115–117; author reply 117-118. https://doi.org/10.1016/j.ijcard.2009.06.020.

    Article  PubMed  Google Scholar 

  58. Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.

    Article  CAS  PubMed  Google Scholar 

  59. Ravindranath, R. R., Romaschin, A., & Thompson, M. (2016). In vitro and in vivo cell-capture strategies using cardiac stent technology - A review. Clinical Biochemistry, 49, 186–191. https://doi.org/10.1016/j.clinbiochem.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  60. Van der Giessen, W. J. S. P., Visser, W. J., Verdouw, P. D., van Schalkwijk, W. P., & Jongkind, J. F. (1988). Endothelialization of intravascular stents. Journal of Interventional Cardiology, 109–120.

  61. Zhu, W., Tian, Y., Zhou, L. F., et al. (2008). Development of a novel endothelial cell-seeded endovascular stent for intracranial aneurysm therapy. Journal of Biomedical Materials Research Part A, 85, 715–721. https://doi.org/10.1002/jbm.a.31592.

    Article  CAS  PubMed  Google Scholar 

  62. Ingram, D. A., Mead, L. E., Tanaka, H., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104, 2752–2760. https://doi.org/10.1182/blood-2004-04-1396.

    Article  CAS  PubMed  Google Scholar 

  63. Asahara, T., Murohara, T., Sullivan, A., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  64. Shi, Q., Rafii, S., Wu, M. H., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362–367.

    Article  CAS  PubMed  Google Scholar 

  65. Lin, Y., Weisdorf, D. J., Solovey, A., et al. (2000). Origins of circulating endothelial cells and endothelial outgrowth from blood. The Journal of Clinical Investigation, 105, 71–77. https://doi.org/10.1172/JCI8071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kang, S. D., Carlon, T. A., Jantzen, A. E., et al. (2013). Isolation of functional human endothelial cells from small volumes of umbilical cord blood. Annals of Biomedical Engineering, 41, 2181–2192. https://doi.org/10.1007/s10439-013-0807-5.

    Article  PubMed  Google Scholar 

  67. Prater, D. N., Case, J., Ingram, D. A., et al. (2007). Working hypothesis to redefine endothelial progenitor cells. Leukemia, 21, 1141–1149. https://doi.org/10.1038/sj.leu.2404676.

    Article  CAS  PubMed  Google Scholar 

  68. Shirota, T., Yasui, H., Shimokawa, H., et al. (2003). Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials, 24, 2295–2302.

    Article  CAS  PubMed  Google Scholar 

  69. Nikolaychik, V. V., Samet, M. M., & Lelkes, P. I. (1994). A new, cryoprecipitate based coating for improved endothelial cell attachment and growth on medical grade artificial surfaces. ASAIO Journal, 40, M846–M852.

    Article  CAS  PubMed  Google Scholar 

  70. Shi, H. J., Cao, A. H., & Teng, G. J. (2010). Seeding endothelial progenitor cells on a self-expanding metal stent: An in vitro study. Journal of Vascular and Interventional Radiology, 21, 1061–1065. https://doi.org/10.1016/j.jvir.2010.03.019.

    Article  PubMed  Google Scholar 

  71. Shi, H. J., Cao, A. H., Chen, J., et al. (2010). Transjugular intrahepatic portosystemic shunt with an autologous endothelial progenitor cell seeded stent: A porcine model. Academic Radiology, 17, 358–367. https://doi.org/10.1016/j.acra.2009.10.007.

    Article  PubMed  Google Scholar 

  72. Chu, C. L., Wang, R. M., Hu, T., et al. (2009). XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy. Journal of Materials Science Materials in Medicine, 20, 223–228. https://doi.org/10.1007/s10856-008-3563-6.

    Article  CAS  PubMed  Google Scholar 

  73. Achneck, H. E., Jamiolkowski, R. M., Jantzen, A. E., et al. (2011). The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells: EPC-seeded antithrombotic Ti implants. Biomaterials, 32, 10–18. https://doi.org/10.1016/j.biomaterials.2010.08.073.

    Article  CAS  PubMed  Google Scholar 

  74. Jantzen, A. E., Lane, W. O., Gage, S. M., et al. (2011). Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model. Biomaterials, 32, 8356–8363. https://doi.org/10.1016/j.biomaterials.2011.07.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Flugelman, M. Y., Virmani, R., Leon, M. B., et al. (1992). Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. Circulation Research, 70, 348–354.

    Article  CAS  PubMed  Google Scholar 

  76. Scott, N. A., Candal, F. J., Robinson, K. A., et al. (1995). Seeding of intracoronary stents with immortalized human microvascular endothelial cells. American Heart Journal, 129, 860–866.

    Article  CAS  PubMed  Google Scholar 

  77. Jantzen, A. E., Noviani, M., Mills, J. S., et al. (2015). Point-of-care seeding of nitinol stents with blood-derived endothelial cells. Journal of Biomedical Materials Research Part B, Applied Biomaterials. https://doi.org/10.1002/jbm.b.33510.

  78. Ormiston, M. L., Toshner, M. R., Kiskin, F. N., et al. (2015). Generation and Culture of Blood Outgrowth Endothelial Cells from Human Peripheral Blood. Journal of Visualized Experiments : JoVE, e53384. https://doi.org/10.3791/53384.

  79. Colombo, E., Calcaterra, F., Cappelletti, M., et al. (2013). Comparison of Fibronectin and Collagen in Supporting the Isolation and Expansion of Endothelial Progenitor Cells from Human Adult Peripheral Blood. PLoS One, 8, e66734. https://doi.org/10.1371/journal.pone.0066734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bueno-Beti, C., Novella, S., Lazaro-Franco, M., et al. (2013). An affordable method to obtain cultured endothelial cells from peripheral blood. Journal of Cellular and Molecular Medicine, 17, 1475–1483. https://doi.org/10.1111/jcmm.12133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raina, T., Iqbal, J., Arnold, N., et al. (2014). Coronary stents seeded with human trophoblastic endovascular progenitor cells show accelerated strut coverage without excessive neointimal proliferation in a porcine model. EuroIntervention : Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 10, 709–716. https://doi.org/10.4244/EIJV10I6A123.

    Article  Google Scholar 

  82. Udayashankar, R., Baker, D., Tuckerman, E., et al. (2011). Characterization of invasive trophoblasts generated from human embryonic stem cells. Human Reproduction, 26, 398–406. https://doi.org/10.1093/humrep/deq350.

    Article  CAS  PubMed  Google Scholar 

  83. Wu, X., Huang, L., Zhou, Q., et al. (2005). Mesenchymal stem cells participating in ex vivo endothelium repair and its effect on vascular smooth muscle cells growth. International Journal of Cardiology, 105, 274–282. https://doi.org/10.1016/j.ijcard.2004.12.090.

    Article  PubMed  Google Scholar 

  84. Wu, X., Wang, G., Tang, C., et al. (2011). Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent. Journal of Biomedical Materials Research Part A, 98, 442–449. https://doi.org/10.1002/jbm.a.33133.

    Article  CAS  PubMed  Google Scholar 

  85. Nabel, E. G., Plautz, G., Boyce, F. M., et al. (1989). Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science, 244, 1342–1344.

    Article  CAS  PubMed  Google Scholar 

  86. Conte, M. S., Birinyi, L. K., Miyata, T., et al. (1994). Efficient repopulation of denuded rabbit arteries with autologous genetically modified endothelial cells. Circulation, 89, 2161–2169.

    Article  CAS  PubMed  Google Scholar 

  87. Dichek, D. A., Neville, R. F., Zwiebel, J. A., et al. (1989). Seeding of intravascular stents with genetically engineered endothelial cells. Circulation, 80, 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  88. Dunn, P. F., Newman, K. D., Jones, M., et al. (1996). Seeding of vascular grafts with genetically modified endothelial cells. Secretion of recombinant TPA results in decreased seeded cell retention in vitro and in vivo. Circulation, 93, 1439–1446.

    Article  CAS  PubMed  Google Scholar 

  89. Van Belle, E., Tio, F. O., Chen, D., et al. (1997). Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. Journal of the American College of Cardiology, 29, 1371–1379.

    Article  PubMed  Google Scholar 

  90. Koren, B., Weisz, A., Fischer, L., et al. (2006). Efficient transduction and seeding of human endothelial cells onto metallic stents using bicistronic pseudo-typed retroviral vectors encoding vascular endothelial growth factor. Cardiovascular Revascularization Medicine, 7, 173–178. https://doi.org/10.1016/j.carrev.2005.12.007.

    Article  PubMed  Google Scholar 

  91. Tang, C., Wang, G., Wu, X., et al. (2011). The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. Journal of Vascular Surgery, 53, 461–471. https://doi.org/10.1016/j.jvs.2010.08.020.

    Article  PubMed  Google Scholar 

  92. Zhou, Z., Shi, S., Song, M., et al. (2009). Development of transgenic endothelial progenitor cell-seeded stents. Journal of Biomedical Materials Research Part A, 91, 623–628. https://doi.org/10.1002/jbm.a.32300.

    Article  CAS  PubMed  Google Scholar 

  93. Kempczinski, R. F., Ramalanjaona, G. R., Douville, C., et al. (1987). Thrombogenicity of a fibronectin-coated, experimental polytetrafluoroethylene graft. Surgery, 101, 439–444.

    CAS  PubMed  Google Scholar 

  94. Opipari Jr., A. W., Boguski, M. S., & Dixit, V. M. (1990). The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. The Journal of Biological Chemistry, 265, 14705–14708.

    Article  CAS  PubMed  Google Scholar 

  95. Lee, E. G., Boone, D. L., Chai, S., et al. (2000). Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science, 289, 2350–2354. https://doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, C., Ying, D., Mi, J., et al. (2008). Development of anti-atherosclerotic tissue-engineered blood vessel by A20-regulated endothelial progenitor cells seeding decellularized vascular matrix. Biomaterials, 29, 2628–2636. https://doi.org/10.1016/j.biomaterials.2008.03.005.

    Article  CAS  PubMed  Google Scholar 

  97. Heyninck, K., & Beyaert, R. (2005). A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends in Biochemical Sciences, 30, 1–4. https://doi.org/10.1016/j.tibs.2004.11.001.

    Article  CAS  PubMed  Google Scholar 

  98. Patel, V. I., Daniel, S., Longo, C. R., et al. (2006). A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. The FASEB Journal, 20, 1418–1430. https://doi.org/10.1096/fj.05-4981com.

    Article  CAS  PubMed  Google Scholar 

  99. Kraft, C. N., Burian, B., Diedrich, O., et al. (2005). Microvascular response of striated muscle to common arthroplasty-alloys: A comparative in vivo study with CoCrMo, Ti-6Al-4V, and Ti-6Al-7Nb. Journal of Biomedical Materials Research Part A, 75, 31–40. https://doi.org/10.1002/jbm.a.30407.

    Article  CAS  PubMed  Google Scholar 

  100. Tsaryk, R., Peters, K., Unger, R. E., et al. (2013). Improving cytocompatibility of Co28Cr6Mo by TiO2 coating: Gene expression study in human endothelial cells. Journal of the Royal Society, Interface, 10, 20130428. https://doi.org/10.1098/rsif.2013.0428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Trepanier, C., Tabrizian, M., Yahia, L. H., et al. (1998). Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of Biomedical Materials Research, 43, 433–440.

    Article  CAS  PubMed  Google Scholar 

  102. Yeh, H. I., Lu, S. K., Tian, T. Y., et al. (2006). Comparison of endothelial cells grown on different stent materials. Journal of Biomedical Materials Research Part A, 76, 835–841. https://doi.org/10.1002/jbm.a.30595.

    Article  CAS  PubMed  Google Scholar 

  103. Huang, N., Yang, P., Leng, Y. X., et al. (2003). Hemocompatibility of titanium oxide films. Biomaterials, 24, 2177–2187.

    Article  CAS  PubMed  Google Scholar 

  104. Paschoal, A. L., Vanancio, E. C., Canale Lde, C., et al. (2003). Metallic biomaterials TiN-coated: Corrosion analysis and biocompatibility. Artificial Organs, 27, 461–464.

    Article  CAS  PubMed  Google Scholar 

  105. Breithaupt-Faloppa, A. C., de Lima, W. T., Oliveira-Filho, R. M., et al. (2008). In vitro behaviour of endothelial cells on a titanium surface. Head & Face Medicine, 4, 14. https://doi.org/10.1186/1746-160X-4-14.

    Article  Google Scholar 

  106. Relou, I. A., Damen, C. A., van der Schaft, D. W., et al. (1998). Effect of culture conditions on endothelial cell growth and responsiveness. Tissue & Cell, 30, 525–530.

    Article  CAS  Google Scholar 

  107. Windecker, S., Mayer, I., De Pasquale, G., et al. (2001). Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation, 104, 928–933.

    Article  CAS  PubMed  Google Scholar 

  108. Pang, J. H., Farhatnia, Y., Godarzi, F., et al. (2015). In situ Endothelialization: Bioengineering Considerations to Translation. Small, 11, 6248–6264. https://doi.org/10.1002/smll.201402579.

    Article  CAS  PubMed  Google Scholar 

  109. Palmaz, J. C., Benson, A., & Sprague, E. A. (1999). Influence of surface topography on endothelialization of intravascular metallic material. Journal of Vascular and Interventional Radiology, 10, 439–444.

    Article  CAS  PubMed  Google Scholar 

  110. Lu, J., Rao, M. P., MacDonald, N. C., et al. (2008). Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomaterialia, 4, 192–201. https://doi.org/10.1016/j.actbio.2007.07.008.

    Article  CAS  PubMed  Google Scholar 

  111. Greiner, A. M., Sales, A., Chen, H., et al. (2016). Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. Beilstein Journal of Nanotechnology, 7, 1620–1641. https://doi.org/10.3762/bjnano.7.155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, J. Y., Zhang, X., Wan, G. J., et al. (2007). Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coating Technology, 201, 8140–8145. https://doi.org/10.1016/j.surfcoat.2006.02.067.

    Article  CAS  Google Scholar 

  113. Chen, J. Y., Leng, Y. X., Zhang, X., et al. (2006). Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC). Nuclear Instruments and Methods B, 242, 26–29. https://doi.org/10.1016/j.nimb.2005.08.098.

    Article  CAS  Google Scholar 

  114. Hansi, C., Arab, A., Rzany, A., et al. (2009). Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces. Catheterization and Cardiovascular Interventions, 73, 488–496. https://doi.org/10.1002/ccd.21834.

    Article  PubMed  Google Scholar 

  115. Mikhalovska, L., Chorna, N., Lazarenko, O., et al. (2011). Inorganic coatings for cardiovascular stents: In vitro and in vivo studies. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 96, 333–341. https://doi.org/10.1002/jbm.b.31772.

    Article  CAS  PubMed  Google Scholar 

  116. Windecker, S., Simon, R., Lins, M., et al. (2005). Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization: The TiNOX trial. Circulation, 111, 2617–2622. https://doi.org/10.1161/CIRCULATIONAHA.104.486647.

    Article  CAS  PubMed  Google Scholar 

  117. Karjalainen, P. P., Annala, A. P., Ylitalo, A., et al. (2010). Long-term clinical outcome with titanium-nitride-oxide-coated stents and paclitaxel-eluting stents for coronary revascularization in an unselected population. International Journal of Cardiology, 144, 42–46. https://doi.org/10.1016/j.ijcard.2009.03.120.

    Article  PubMed  Google Scholar 

  118. Gill, P., Musaramthota, V., Munroe, N., et al. (2015). Surface modification of Ni-Ti alloys for stent application after magnetoelectropolishing. Materials Science & Engineering. C, Materials for Biological Applications, 50, 37–44. https://doi.org/10.1016/j.msec.2015.01.009.

    Article  CAS  Google Scholar 

  119. Milleret, V., Ziogas, A., Buzzi, S., et al. (2015). Effect of oxide layer modification of CoCr stent alloys on blood activation and endothelial behavior. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 103, 629–640. https://doi.org/10.1002/jbm.b.33232.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Q., Shen, Y., Tang, C., et al. (2015). Surface modification of coronary stents with SiCOH plasma nanocoatings for improving endothelialization and anticoagulation. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 103, 464–472. https://doi.org/10.1002/jbm.b.33229.

    Article  CAS  PubMed  Google Scholar 

  121. Waterhouse, A., Wise, S. G., Yin, Y., et al. (2012). In vivo biocompatibility of a plasma-activated, coronary stent coating. Biomaterials, 33, 7984–7992. https://doi.org/10.1016/j.biomaterials.2012.07.059.

    Article  CAS  PubMed  Google Scholar 

  122. Harvey, J., Bergdahl, A., Dadafarin, H., et al. (2012). An electrochemical method for functionalization of a 316L stainless steel surface being used as a stent in coronary surgery: Irreversible immobilization of fibronectin for the enhancement of endothelial cell attachment. Biotechnology Letters, 34, 1159–1165. https://doi.org/10.1007/s10529-012-0885-8.

    Article  CAS  PubMed  Google Scholar 

  123. Yin, Y., Wise, S. G., Nosworthy, N. J., et al. (2009). Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials, 30, 1675–1681. https://doi.org/10.1016/j.biomaterials.2008.11.009.

    Article  CAS  PubMed  Google Scholar 

  124. Tersteeg, C., Roest, M., Mak-Nienhuis, E. M., et al. (2012). A fibronectin-fibrinogen-tropoelastin coating reduces smooth muscle cell growth but improves endothelial cell function. Journal of Cellular and Molecular Medicine, 16, 2117–2126. https://doi.org/10.1111/j.1582-4934.2011.01519.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sgarioto, M., Vigneron, P., Patterson, J., et al. (2012). Collagen type I together with fibronectin provide a better support for endothelialization. Comptes Rendus Biologies, 335, 520–528. https://doi.org/10.1016/j.crvi.2012.07.003.

    Article  CAS  PubMed  Google Scholar 

  126. Joner, M., Cheng, Q., Schonhofer-Merl, S., et al. (2012). Polymer-free immobilization of a cyclic RGD peptide on a nitinol stent promotes integrin-dependent endothelial coverage of strut surfaces. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 100, 637–645. https://doi.org/10.1002/jbm.b.31988.

    Article  CAS  PubMed  Google Scholar 

  127. Castellanos, M. I., Zenses, A. S., Grau, A., et al. (2015). Biofunctionalization of REDV elastin-like recombinamers improves endothelialization on CoCr alloy surfaces for cardiovascular applications. Colloids and Surfaces B: Biointerfaces, 127, 22–32. https://doi.org/10.1016/j.colsurfb.2014.12.056.

    Article  CAS  PubMed  Google Scholar 

  128. de Torre, I. G., Wolf, F., Santos, M., et al. (2015). Elastin-like recombinamer-covered stents: Towards a fully biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomaterialia, 12, 146–155. https://doi.org/10.1016/j.actbio.2014.10.029.

    Article  CAS  PubMed  Google Scholar 

  129. Shen, W., Cai, K., Yang, Z., et al. (2012). Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating. Colloids and Surfaces B: Biointerfaces, 94, 347–353. https://doi.org/10.1016/j.colsurfb.2012.02.009.

    Article  CAS  PubMed  Google Scholar 

  130. Tsukada, J., Wolf, F., Vogt, F., et al. (2020 2020/07/16). Development of in vitro endothelialized drug-eluting stent using human peripheral blood-derived endothelial progenitor cells. Journal of Tissue Engineering and Regenerative Medicine. https://doi.org/10.1002/term.3107.

Download references

Author information

Authors and Affiliations

Authors

Contributions

JT and PM conceived the paper; JT, PM, and FV searched the literature; JT and HT drafted the paper; FV, PM, MJ, and TS revised the content critically.

Corresponding author

Correspondence to Jitsuro Tsukada.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare that they have no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukada, J., Mela, P., Jinzaki, M. et al. Development of In Vitro Endothelialised Stents - Review -. Stem Cell Rev and Rep 18, 179–197 (2022). https://doi.org/10.1007/s12015-021-10238-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10238-3

Keywords

Navigation