Synthesis 2021; 53(23): 4409-4418
DOI: 10.1055/a-1549-1082
feature

Organophosphane-Catalyzed Construction of Functionalized 2-Ylideneoxindoles via Direct β-Acylation

Wey-Chyng Jeng
,
Po-Chung Chien
,
Sandip Sambhaji Vagh
,
Athukuri Edukondalu
,
Wenwei Lin
The authors thank the Ministry of Science and Technology, Republic of China (MOST 107-2628-M-003-001-MY3) for financial support.


Abstract

We report an efficient method for the direct β-acylation of 2-ylideneoxindoles with acyl chlorides that is catalyzed by organophosphanes in the presence of base. A variety of functionalized 2-ylideneoxindoles were prepared in moderate to good yields under mild, metal-free conditions via a tandem phospha-Michael/O-acylation/intramolecular cyclization/rearrangement sequence. Mechanistic investigations revealed that C–O bond cleavage on a possible betaine intermediate is the key step for the installation of the keto-functionality at the β-position of 2-ylideneoxindoles in a highly stereospecific manner. The synthetic utility of this protocol could also be proven by a scale-up reaction and synthetic transformations of the products.

Supporting Information



Publication History

Received: 17 June 2021

Accepted after revision: 13 July 2021

Accepted Manuscript online:
13 July 2021

Article published online:
16 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Liou Y.-C, Wang H.-W, Edukondalu A, Lin W. Org. Lett. 2021; 23: 3064
    • 1b Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
    • 1c Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
    • 1d Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 1e Lee C.-J, Chang T.-H, Yu J.-K, Reddy GM, Hsiao M.-Y, Lin W. Org. Lett. 2016; 18: 3758
    • 1f Gomez C, Betzer J.-F, Voituriez A, Marinetti A. ChemCatChem 2013; 5: 1055
    • 1g Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
    • 1h Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 2a Nykaza TV, Li G, Yang J, Luzung MR, Radosevich AT. Angew. Chem. Int. Ed. 2020; 59: 4505
    • 2b O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281
    • 3a Kim HT, Kang E, Kim M, Joo JM. Org. Lett. 2021; 23: 3657
    • 3b Chen X.-Y, Wu Y, Zhou J, Wang P, Yu J.-Q. Org. Lett. 2019; 21: 1426
    • 3c Wedi P, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 13016
    • 3d Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
    • 3e Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
    • 3f Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
    • 3g Shi Z, Glorius F. Chem. Sci. 2013; 4: 829
    • 3h Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
    • 3i Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 4a Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2020; 59: 2998
    • 4b Zhang Y.-F, Shi Z.-J. Acc. Chem. Res. 2019; 52: 161
    • 4c Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
    • 4d Sämann C, Schade MA, Yamada S, Knochel P. Angew. Chem. Int. Ed. 2013; 52: 9495
    • 4e Wang J, Liu C, Yuan J, Lei A. Angew. Chem. Int. Ed. 2013; 52: 2256
    • 4f Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 4g Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
    • 5a Wang C, Wang Z, Xie X, Yao X, Li G, Zu L. Org. Lett. 2017; 19: 1828
    • 5b Reddy BN, Ramana CV. Chem. Commun. 2013; 49: 9767
    • 5c Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett. 2009; 11: 197
    • 5d Liu J.-F, Jiang Z.-Y, Wang R.-R, Zheng Y.-T, Chen J.-J, Zhang X.-M, Ma Y.-B. Org. Lett. 2007; 9: 4127
    • 5e Pearson WH, Mi Y, Lee IY, Stoy P. J. Am. Chem. Soc. 2001; 123: 6724
    • 5f Asai A, Nagamura S, Kobayashi E, Gomi K, Saito H. Bioorg. Med. Chem. Lett. 1996; 6: 1215
    • 6a Liu X, Yan X, Yu J.-H, Tang Y.-D, Wang K, Zhang H. Org. Lett. 2019; 21: 5626
    • 6b Li J.-S, Liu Y.-J, Li S, Ma J.-A. Chem. Commun. 2018; 54: 9151
    • 6c Li Y.-J, Yan N, Liu C.-H, Yu Y, Zhao Y.-L. Org. Lett. 2017; 19: 1160
    • 6d Dalpozzo R. Adv. Synth. Catal. 2017; 359: 1772
    • 6e Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, García Ruano JL, Alemán J. Chem. Commun. 2012; 48: 9759
    • 6f Zhang Y.-Q, Zhu D.-Y, Jiao Z.-W, Li B.-S, Zhang F.-M, Tu Y.-Q, Bi Z. Org. Lett. 2011; 13: 3458
    • 7a Fei X.-H, Zhao Y.-L, Yang F.-F, Guan X, Li Z.-Q, Wang D.-P, Zhou M, Yang Y.-Y, He B. Adv. Synth. Catal. 2021; 363: 3018
    • 7b Zhou J, Wang B, He X.-H, Liu L, Wu J, Lu J, Peng C, Rao C.-L, Han B. J. Org. Chem. 2019; 84: 5450
    • 7c Tang X, Zhu H.-P, Zhou J, Chen Y, Pan X.-L, Guo L, Li J.-L, Peng C, Huang W. Org. Biomol. Chem. 2018; 16: 8169
    • 7d Guo C, Schedler M, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
    • 7e Wang M, Rong Z.-Q, Zhao Y. Chem. Commun. 2014; 50: 15309
    • 8a Edukondalu A, Vagh SS, Lin T.-H, Lin W. Chem. Commun. 2021; 57: 2045
    • 8b Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
    • 8c Khairnar PV, Wu C.-Y, Lin Y.-F, Edukondalu A, Chen Y.-R, Lin W. Org. Lett. 2020; 22: 4760
    • 8d Liou Y.-C, Karanam P, Jang Y.-J, Lin W. Org. Lett. 2019; 21: 8008
    • 8e Yang S.-M, Wang C.-Y, Lin C.-K, Karanam P, Reddy GM, Tsai Y.-L, Lin W. Angew. Chem. Int. Ed. 2018; 57: 1668
    • 8f Chen Y.-R, Reddy GM, Hong S.-H, Wang Y.-Z, Yu J.-K, Lin W. Angew. Chem. Int. Ed. 2017; 56: 5106
    • 8g Chang G.-H, Yang M.-C, Möhlmann L, Lin W. Angew. Chem. Int. Ed. 2015; 54: 8502
    • 8h Lee C.-J, Jang Y.-J, Wu Z.-Z, Lin W. Org. Lett. 2012; 14: 1906
    • 8i Kao T.-T, Syu S.-e, Jhang Y.-W, Lin W. Org. Lett. 2010; 12: 3066
    • 9a Khairnar PV, Su Y.-H, Chen Y.-C, Edukondalu A, Chen Y.-R, Lin W. Org. Lett. 2020; 22: 6868
    • 9b Liou Y.-C, Su Y.-H, Ku K.-C, Edukondalu A, Lin C.-K, Ke Y.-S, Karanam P, Lee C.-J, Lin W. Org. Lett. 2019; 21: 8339
    • 9c Lee C.-J, Sheu C.-N, Tsai C.-C, Wu Z.-Z, Lin W. Chem. Commun. 2014; 50: 5304
  • 10 CCDC 2089146 (3aa) and 2086884 (3ab) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 11a Jia H, Dai G, Weng J, Zhang Z, Wang Q, Zhou F, Jiao L, Cui Y, Ren Y, Fan S, Zhou J, Qing W, Gu Y, Wang J, Sai Y, Su W. J. Med. Chem. 2014; 57: 7577
    • 11b Reniers J, Meinguet C, Moineaux L, Masereel B, Vincent SP, Frederick R, Wouters J. Eur. J. Med. Chem. 2011; 46: 6104
    • 11c Frédérick R, Dumont W, Ooms F, Aschenbach L, Van der Schyf CJ, Castagnoli N, Wouters J, Krief A. J. Med. Chem. 2006; 49: 3743
  • 12 Hastings DJ, Weedon AC. Can. J. Chem. 1991; 69: 1171
  • 13 Chien CS, Hasegawa A, Kawasaki T, Sakamoto M. Chem. Pharm. Bull. 1986; 34: 1493