Skip to main content
Log in

An ionic liquid-assisted quantum dot-grafted covalent organic framework-based multi-dimensional sensing array for discrimination of insecticides using principal component analysis and clustered heat map

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A robust multi-dimensional sensing array based on VBimBF4B/MAA-anchored quantum dot (QD)-grafted covalent organic frameworks (COFs) [(V-M)/QD-grafted COFs] was established via one-pot strategy. The multi-dimensional sensing array has the outstanding advantages of physicochemical and thermal stability, large specific surface area, and regular pore structures. The assistance of ionic liquid VBimBF4B enhanced the transduction efficiency, and the synergistic effect of COFs enhanced detection efficiency. The improved multi-dimensional sensing array by COFs and ionic liquid VBimBF4B served to identify seven insecticides by non-specific interactions via hydrogen bonding, and the differences in the kinetics of the binding to the insecticides resulted in variation of the three-output channel (fluorescence, phosphorescence, and light scattering) signals, thus generating a distinct optical fingerprint. The unique fingerprint patterns of seven kinds of common insecticides at 200 μg L−1 were successfully discriminated using principal component analysis and clustered heat map analysis. The multi-dimensional sensing array showed a response to seven insecticides based on three spectral channels over the range of 0.001–0.4 μg mL−1 with a limit of detection of 1.08–18.68 μg L−1. The spiked recovery of tap water was 79.86–134.22%, with RSD ranging from 0.89–14.9%. This study broadens the applications of sensing arrays technology and provides a promising building block for insecticide determination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. https://doi.org/10.1038/nmeth.1248

    Article  CAS  PubMed  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. https://doi.org/10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  3. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488):354–357. https://doi.org/10.1038/370354a0

    Article  CAS  Google Scholar 

  4. Chen J, Zheng J, Zhao K, Deng A, Li J (2020) Electrochemiluminescence resonance energy transfer system between non-toxic SnS2 quantum dots and ultrathin Ag@Au nanosheets for chloramphenicol detection. Chem Eng J 392:123670. https://doi.org/10.1016/j.cej.2019.123670

    Article  CAS  Google Scholar 

  5. Côté AP, Benin AI, Ockwig NW, Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170. https://doi.org/10.1126/science.1120411

    Article  CAS  PubMed  Google Scholar 

  6. Ni T, Zhang D, Wang J, Wang S, Liu H, Sun B (2018) Grafting of quantum dots on covalent organic frameworks via a reverse microemulsion for highly selective and sensitive protein optosensing. Sensors Actuators B Chem 269:340–345. https://doi.org/10.1016/j.snb.2018.04.172

    Article  CAS  Google Scholar 

  7. Shet SM, Bisht M, Pramanik S, Roy S, Kumar TS, Nataraj SK, Mondal D, Bhandari S (2020) Engineering quantum dots with ionic liquid: a multifunctional white light emitting hydrogel for enzyme packaging. Adv Opt Mater 8(8):1902022. https://doi.org/10.1002/adom.201902022

    Article  CAS  Google Scholar 

  8. Qian S, Sun S, Wang Y, Li Z, Lin H (2019) Recent advances of multidimensional sensing: from design to applications. Sci China Chem 62(12):1601–1618. https://doi.org/10.1007/s11426-019-9585-5

    Article  CAS  Google Scholar 

  9. Li X, Kong C, Chen Z (2019) Colorimetric sensor arrays for antioxidant discrimination based on the inhibition of the oxidation reaction between 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxides. ACS Appl Mater Interfaces 11(9):9504–9509. https://doi.org/10.1021/acsami.8b18548

    Article  CAS  PubMed  Google Scholar 

  10. Ngernpimai S, Geng Y, Makabenta JM, Landis RF, Keshri P, Gupta A, Li CH, Chompoosor A, Rotello VM (2019) Rapid identification of biofilms using a robust multichannel polymer sensor array. ACS Appl Mater Interfaces 11(12):11202–11208. https://doi.org/10.1021/acsami.9b00839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Das Saha N, Sasmal R, Meethal SK, Vats S, Gopinathan PV, Jash O, Manjithaya R, Gagey-Eilstein N, Agasti SS (2019) Multichannel DNA sensor array fingerprints cell states and identifies pharmacological effectors of catabolic processes. ACS Sens 4(12):3124–3132. https://doi.org/10.1021/acssensors.9b01009

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Yang T, Wang X, Wang Y, Liu M, Chen M, Yu Y, Wang J (2019) A novel three-dimensional nanosensing array for the discrimination of sulfur-containing species and sulfur bacteria. Anal Chem 91(9):6012–6018. https://doi.org/10.1021/acs.analchem.9b00476

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Zhang Y, He H, Yang H, Wei W (2018) Simultaneous quadruple-channel optical transduction of a nanosensor for multiplexed qualitative and quantitative analysis of lectins. Chem Commun 54(56):7754–7757. https://doi.org/10.1039/C8CC02138D

    Article  CAS  Google Scholar 

  14. Liu Y, Bonizzoni M (2014) A supramolecular sensing array for qualitative and quantitative analysis of organophosphates in water. J Am Chem Soc 136(40):14223–14229. https://doi.org/10.1021/ja507905r

    Article  CAS  PubMed  Google Scholar 

  15. Qiao L, Qian S, Wang Y, Lin H (2018) A colorimetric sensor array based on sulfuric acid assisted KMnO4 fading for the detection and identification of pesticides. Talanta 181:305–310. https://doi.org/10.1016/j.talanta.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  16. Gao L, Ju L, Cui H (2017) Chemiluminescent and fluorescent dual-signal graphene quantum dots and their application in pesticide sensing arrays. J Mater Chem C 5(31):7753–7758. https://doi.org/10.1039/C7TC01658A

    Article  CAS  Google Scholar 

  17. Fahimi-Kashani N, Hormozi-Nezhad MR (2016) Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal Chem 88(16):8099–8106. https://doi.org/10.1021/acs.analchem.6b01616

    Article  CAS  PubMed  Google Scholar 

  18. Moreno-González D, Cutillas V, Hernando MD, Alcántara-Durán J, García-Reyes JF, Molina-Díaz A (2020) Quantitative determination of pesticide residues in specific parts of bee specimens by nanoflow liquid chromatography high resolution mass spectrometry. Sci Total Environ 715:137005. https://doi.org/10.1016/j.scitotenv.2020.137005

    Article  CAS  PubMed  Google Scholar 

  19. Wang T, Liigand J, Frandsen HL, Smedsgaard J, Kruve A (2020) Standard substances free quantification makes LC/ESI/MS non-targeted screening of pesticides in cereals comparable between labs. Food Chem 318:126460. https://doi.org/10.1016/j.foodchem.2020.126460

    Article  CAS  PubMed  Google Scholar 

  20. Cheng J, Li Y, Zhong J, Lu Z, Wang G, Sun M, Jiang Y, Zou P, Wang X, Zhao Q, Wang Y, Rao H (2020) Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chem Eng J 398:125664. https://doi.org/10.1016/j.cej.2020.125664

    Article  CAS  Google Scholar 

  21. Zhang C, Cui M, Ren J, Xing Y, Li N, Zhao H, Liu P, Ji X, Li M (2020) Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection. Chem Eng J 401:126025. https://doi.org/10.1016/j.cej.2020.126025

    Article  CAS  Google Scholar 

  22. Wu P, Miao L, Wang H, Shao X, Yan X (2011) A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew Chem Int Ed 50(35):8118–8121. https://doi.org/10.1002/anie.201101882

    Article  CAS  Google Scholar 

  23. Li Z, Jennings A (2017) Worldwide regulations of standard values of pesticides for human health risk control: a review. Int J Environ Res Public Health 14(7). https://doi.org/10.3390/ijerph14070826

  24. Ouyang H, Tu X, Fu Z, Wang W, Fu S, Zhu C, Du D, Lin Y (2018) Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens Bioelectron 106:43–49. https://doi.org/10.1016/j.bios.2018.01.033

    Article  CAS  PubMed  Google Scholar 

  25. Sánchez-Bayo F (2014) The trouble with neonicotinoids. Science 346(6211):806–807. https://doi.org/10.1126/science.1259159

    Article  PubMed  Google Scholar 

  26. Rahim S, Khalid S, Bhanger MI, Shah MR, Malik MI (2018) Polystyrene-block-poly(2-Vinylpyridine)-conjugated silver nanoparticles as colorimetric sensor for quantitative determination of cartap in aqueous media and blood plasma. Sensor Actuat B-Chem 259:878–887. https://doi.org/10.1016/j.snb.2017.12.138

    Article  CAS  Google Scholar 

  27. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

    Article  CAS  PubMed  Google Scholar 

  28. Suganthi A, Bhuvaneswari K, Ramya M (2018) Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS. Food Chem 241:275–280. https://doi.org/10.1016/j.foodchem.2017.08.098

    Article  CAS  PubMed  Google Scholar 

  29. Dai J, Chen H, Gao G, Zhu L, Chai Y, Liu X (2019) Simultaneous determination of cartap and its metabolite in tea using hydrophilic interaction chromatography tandem mass spectrometry and the combination of dispersive solid phase extraction and solid phase extraction. J Chromatogr A 1600:148–157. https://doi.org/10.1016/j.chroma.2019.04.034

    Article  CAS  PubMed  Google Scholar 

  30. Wu M, Deng H, Fan Y, Hu Y, Guo Y, Xie L (2018) Rapid colorimetric detection of cartap residues by AgNP sensor with magnetic molecularly imprinted microspheres as recognition elements. Molecules 23(6). https://doi.org/10.3390/molecules23061443

  31. Takahashi F, Yamamoto N, Todoriki M, Jin J (2018) Sonochemical preparation of gold nanoparticles for sensitive colorimetric determination of nereistoxin insecticides in environmental samples. Talanta 188:651–657. https://doi.org/10.1016/j.talanta.2018.06.042

    Article  CAS  PubMed  Google Scholar 

  32. Arduini F, Cinti S, Caratelli V, Amendola L, Palleschi G, Moscone D (2019) Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens Bioelectron 126:346–354. https://doi.org/10.1016/j.bios.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  33. Zhang D, Tang J, Liu H (2019) Rapid determination of lambda-cyhalothrin using a fluorescent probe based on ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers. Anal Bioanal Chem 411(20):5309–5316. https://doi.org/10.1007/s00216-019-01912-0

    Article  CAS  PubMed  Google Scholar 

  34. Chen D, Zhuang X, Zhai J, Zheng Y, Lu H, Chen L (2018) Preparation of highly sensitive Pt nanoparticles-carbon quantum dots/ionic liquid functionalized graphene oxide nanocomposites and application for H2O2 detection. Sensor Actuat B-Chem 255:1500–1506. https://doi.org/10.1016/j.snb.2017.08.156

    Article  CAS  Google Scholar 

  35. Yuan X, Jiang W, Wang J, Liu H, Sun B (2020) High-performance multiporous imprinted microspheres based on n-doped carbon dots exfoliated from covalent organic framework for flonicamid optosensing. ACS Appl Mater Interfaces 12(22):25150–25158. https://doi.org/10.1021/acsami.0c04766

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Yuan X, Jiang W, Liu H (2020) Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic frameworks in a molecularly imprinted network. Microchim Acta 187(8):464. https://doi.org/10.1007/s00604-020-04435-z

    Article  CAS  Google Scholar 

  37. Miao Y, Sun X, Yang Q, Yan G (2018) Single-sensing-unit 3D quantum dot sensors for the identification and differentiation of mucopolysaccharides. New J Chem 42(20):16752–16757. https://doi.org/10.1039/C8NJ03017K

    Article  CAS  Google Scholar 

  38. Liu H, Zhang Y, Zhang D, Zheng F, Huang M, Sun J, Sun X, Li H, Wang J, Sun B (2019) A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Microchim Acta 186(3):182. https://doi.org/10.1007/s00604-019-3306-z

    Article  CAS  Google Scholar 

  39. Zhang D, Liu H, Geng W, Wang Y (2019) A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem 277:639–645. https://doi.org/10.1016/j.foodchem.2018.10.147

    Article  CAS  PubMed  Google Scholar 

  40. Yuan X, Zhang D, Zhu X, Liu H, Sun B (2021) Triple-dimensional spectroscopy combined with chemometrics for the discrimination of pesticide residues based on ionic liquid-stabilized Mn-ZnS quantum dots and covalent organic frameworks. Food Chem:342. https://doi.org/10.1016/j.foodchem.2020.128299

  41. Zhang Y, Zhang D, Liu J, Wang S, Liu H (2019) A high photoluminescence sensor for selective detection of cartap based on functionalized VBimBF4B ionic liquid-strengthened sulfur-doped carbon nanodots. New J Chem 43(23):8873–8881. https://doi.org/10.1039/C9NJ00728H

    Article  CAS  Google Scholar 

  42. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134(48):19524–19527. https://doi.org/10.1021/ja308278w

    Article  CAS  PubMed  Google Scholar 

  43. Xie S, Yuan W, Wang P, Tang Y, Teng L, Peng Q (2019) Target-induced conformational switch of DNAzyme for homogeneous electrochemical detection of nereistoxin-related insecticide on an ultramicroelectrode. Sensor Actuat B-Chem 292:64–69. https://doi.org/10.1016/j.snb.2019.04.095

    Article  CAS  Google Scholar 

  44. Yang Y, Hou J, Huo D, Wang X, Li J, Xu G, Bian M, He Q, Hou C, Yang M (2019) Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles. Microchim Acta 186(4):259. https://doi.org/10.1007/s00604-019-3361-5

    Article  CAS  Google Scholar 

  45. Wang J, Wu Y, Zhou P, Yang W, Tao H, Qiu S, Feng C (2018) A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. Analyst 134:5151–5160. https://doi.org/10.1039/C8AN01166D

    Article  Google Scholar 

  46. Wang Z, Wu L, Shen B, Jiang Z (2013) Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles. Talanta 114:124–130. https://doi.org/10.1016/j.talanta.2013.02.069

    Article  CAS  PubMed  Google Scholar 

  47. Wang Q, Yin Q, Fan Y, Zhang L, Xu Y, Hu O, Guo X, Shi Q, Fu H, She Y (2019) Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 199:46–53. https://doi.org/10.1016/j.talanta.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  48. Amjadi M, Jalili R (2017) Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens Bioelectron 96:121–126. https://doi.org/10.1016/j.bios.2017.04.045

    Article  CAS  PubMed  Google Scholar 

  49. Luo Q, Li Z, Lai J, Li F, Qiu P, Wang X (2017) An on–off–on gold nanocluster-based fluorescent probe for sensitive detection of organophosphorus pesticides. RSC Adv 7(87):55199–55205. https://doi.org/10.1039/C7RA11835J

    Article  CAS  Google Scholar 

  50. Liu C, Song Z, Pan J, Yan Y, Cao Z, Wei X, Gao L, Wang J, Dai J, Meng M (2014) A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of lambda-Cyhalothrin. Talanta 125:14–23. https://doi.org/10.1016/j.talanta.2014.02.062

    Article  CAS  PubMed  Google Scholar 

  51. Wei X, Hao T, Xu Y, Lu K, Li H, Yan Y, Zhou Z (2016) Facile polymerizable surfactant inspired synthesis of fluorescent molecularly imprinted composite sensor via aqueous CdTe quantum dots for highly selective detection of lambda-cyhalothrin. Sensor Actuat B-Chem 224:315–324. https://doi.org/10.1016/j.snb.2015.10.048

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31822040), the National Key R&D Program of China (No. 2018YFC1602300), and the Young Top-Notch Talent of High-Level Innovation and Entrepreneurs Support Program (No. 2017000026833ZK28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huilin Liu or Jing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 6003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, D., Zhao, Y. et al. An ionic liquid-assisted quantum dot-grafted covalent organic framework-based multi-dimensional sensing array for discrimination of insecticides using principal component analysis and clustered heat map. Microchim Acta 188, 298 (2021). https://doi.org/10.1007/s00604-021-04936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04936-5

Keywords

Navigation