Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generic acquisition protocol for quantitative MRI of the spinal cord

Abstract

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the MRI metrics that could be extracted from the spine generic protocol.
Fig. 2: Sequences included in the spine generic protocol (in black) with possible applications (in red).
Fig. 3: Patient positioning.
Fig. 4
Fig. 5
Fig. 6
Fig. 7: Checking a pulse oximeter trace.
Fig. 8: Positioning of the FOV, shim box and saturation bands for the GRE-ME scan.
Fig. 9
Fig. 10
Fig. 11: Axial views of good quality data for DWI scans at b = 0 s/mm2 (top row) and b = 800 s/mm2 (bottom row).
Fig. 12: Axial views of good-quality data for MT0, MT1 and T1w scans.
Fig. 13

Similar content being viewed by others

References

  1. Cercignani, M., Dowell, N. G. & Tofts, P. S. Quantitative MRI of the Brain: Principles of Physical Measurement 2nd edn (CRC Press, 2018).

  2. Cohen-Adad, J. & Wheeler-Kingshott, C. (eds). Quantitative MRI of the Spinal Cord (Academic Press, 2014).

  3. Wheeler-Kingshott, C. A. et al. The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84, 1082–1093 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Stroman, P. W. et al. The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84, 1070–1081 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen-Adad, J. & Wald, L. L. Array coils. in Quantitative MRI of the Spinal Cord (Cohen-Adad, J. & Wheeler-Kingshott, C. A. M. eds) 59–67 (Academic Press, 2014).

  6. Barry, R. L., Vannesjo, S. J., By, S., Gore, J. C. & Smith, S. A. Spinal cord MRI at 7T. Neuroimage 168, 437–451 (2018).

    Article  PubMed  Google Scholar 

  7. Saritas, E. U., Holdsworth, S. J. & Bammer, R. Susceptibility artifacts. in Quantitative MRI of the Spinal Cord (Cohen-Adad, J. & Wheeler-Kingshott, C. A. M. eds) 91–104 (Academic Press, 2014).

  8. Bonati, U. et al. Cervical cord and brain grey matter atrophy independently associate with long-term MS disability. J. Neurol. Neurosurg. Psychiatry 82, 471–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Cohen, A. B. et al. The relationships among MRI-defined spinal cord involvement, brain involvement, and disability in multiple sclerosis. J. Neuroimaging 22, 122–128 (2012).

    Article  PubMed  Google Scholar 

  10. Kearney, H. et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult. Scler. 20, 72–80 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lukas, C. et al. Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology 269, 542–552 (2013).

    Article  PubMed  Google Scholar 

  12. Branco, L. M. T. et al. Spinal cord atrophy correlates with disease duration and severity in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 93–97 (2014).

    Article  PubMed  Google Scholar 

  13. El Mendili, M.-M. et al. Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. PLoS One 9, e95516 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Albuquerque, M. et al. Longitudinal evaluation of cerebral and spinal cord damage in amyotrophic lateral sclerosis. Neuroimage Clin. 14, 269–276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Querin, G. et al. Spinal cord multi-parametric magnetic resonance imaging for survival prediction in amyotrophic lateral sclerosis. Eur. J. Neurol. 24, 1040–1046 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Paquin, M.-Ê. et al. Spinal cord gray matter atrophy in amyotrophic lateral sclerosis. AJNR Am. J. Neuroradiol. 39, 184–192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. van de Stadt, S. I. W. et al. Spinal cord atrophy as a measure of severity of myelopathy in adrenoleukodystrophy. J. Inherit. Metab. Dis. 43, 852–860 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kadanka, Z. Jr et al. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 7, e00797 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Seif, M. et al. Cervical cord neurodegeneration in traumatic and non-traumatic spinal cord injury. J. Neurotrauma 37, 860–867 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Leener, B. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43 (2017).

    Article  PubMed  Google Scholar 

  21. Rasoanandrianina, H. et al. Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: a preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer). NMR Biomed. 30, e3801 (2017).

    Article  CAS  Google Scholar 

  22. Martin, A. R. et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin. 10, 192–238 (2016).

    Article  PubMed  Google Scholar 

  23. David, G. et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat. Rev. Neurol. 15, 718–731 (2019).

    Article  PubMed  Google Scholar 

  24. Cadotte, D. W., Akbar, M. A., Fehlings, M. G., Stroman, P. W. & Cohen-Adad, J. What has been learned from magnetic resonance imaging examination of the injured human spinal cord: a Canadian perspective. J. Neurotrauma 35, 1942–1957 (2018).

    Article  PubMed  Google Scholar 

  25. Huffnagel, I. C. et al. Longitudinal diffusion MRI as surrogate outcome measure for myelopathy in adrenoleukodystrophy. Neurology 93, e2133–e2143 (2019).

    Article  PubMed  Google Scholar 

  26. Martin, A. R. et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open 8, e019809 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Labounek, R. et al. HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci. Rep. 10, 17529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmierer, K., Scaravilli, F., Altmann, D. R., Barker, G. J. & Miller, D. H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 56, 407–415 (2004).

    Article  PubMed  Google Scholar 

  29. Fatemi, A. et al. Magnetization transfer MRI demonstrates spinal cord abnormalities in adrenomyeloneuropathy. Neurology 64, 1739–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lema, A. et al. A comparison of magnetization transfer methods to assess brain and cervical cord microstructure in multiple sclerosis. J. Neuroimaging 27, 221–226 (2017).

    Article  PubMed  Google Scholar 

  31. Cohen-Adad, J. et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 55, 1024–1033 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Cohen-Adad, J. et al. Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Sci. Data https://doi.org/10.1038/s41597-021-00941-8 (2021).

  33. Grussu, F. et al. Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord. Magn. Reson. Med. 81, 1247–1264 (2019).

    Article  PubMed  Google Scholar 

  34. Feaster, D. J., Mikulich-Gilbertson, S. & Brincks, A. M. Modeling site effects in the design and analysis of multi-site trials. Am. J. Drug Alcohol Abus. 37, 383–391 (2011).

    Article  Google Scholar 

  35. Fratini, M. et al. Multiscale imaging approach for studying the central nervous system: methodology and perspective. Front. Neurosci. 14, 72 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grussu, F. et al. Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. Neuroimage 217, 116884 (2020).

    Article  PubMed  Google Scholar 

  37. Gros, C. et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 184, 901–915 (2019).

    Article  PubMed  Google Scholar 

  38. Papinutto, N. & Henry, R. G. Evaluation of intra-and interscanner reliability of MRI protocols for spinal cord gray matter and total cross-sectional area measurements. J. Magn. Reson. Imaging 49, 1078–1090 (2019).

    Article  PubMed  Google Scholar 

  39. Perone, C. S., Ballester, P., Barros, R. C. & Cohen-Adad, J. Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. Neuroimage 194, 1–11 (2019).

    Article  PubMed  Google Scholar 

  40. Perone, C. S., Calabrese, E. & Cohen-Adad, J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 8, 5966 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lévy, S. et al. Test-retest reliability of myelin imaging in the human spinal cord: Measurement errors versus region- and aging-induced variations. PLoS One 13, e0189944 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gros, C. et al. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Med. Image Anal. 44, 215–227 (2018).

    Article  PubMed  Google Scholar 

  43. Duval, T., Smith, V., Stikov, N., Klawiter, E. C. & Cohen-Adad, J. Scan-rescan of axcaliber, macromolecular tissue volume, and g-ratio in the spinal cord. Magn. Reson. Med. 79, 2759–2765 (2018).

    Article  PubMed  Google Scholar 

  44. De Leener, B. et al. PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage 165, 170–179 (2018).

    Article  PubMed  Google Scholar 

  45. Prados, F. et al. Spinal cord grey matter segmentation challenge. Neuroimage 152, 312–329 (2017).

    Article  PubMed  Google Scholar 

  46. De Leener, B. et al. Topologically preserving straightening of spinal cord MRI. J. Magn. Reson. Imaging 46, 1209–1219 (2017).

    Article  PubMed  Google Scholar 

  47. Duval, T. et al. g-Ratio weighted imaging of the human spinal cord in vivo. Neuroimage 145, 11–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Dupont, S. M. et al. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. Neuroimage https://doi.org/10.1016/j.neuroimage.2016.09.026 (2017).

  49. Papp, D., Smith, A. K., Mariano, R. & Clare, S. High-resolution quantitative maps of magnetisation transfer, R1 and R2* of the cervical spinal cord in clinically feasible acquisition time using vendor-provided sequences. in Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada 4992 (2019).

  50. Vahdat, S. et al. Resting-state brain and spinal cord networks in humans are functionally integrated. PLoS Biol. 18, e3000789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Di Nuzzo, M. et al. Towards a standard pipeline for the analysis of human spinal cord fMRI data series. in Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada (2019).

  52. Moccia, M. et al. Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Ann. Neurol. 86, 704–713 (2019).

    Article  PubMed  Google Scholar 

  53. Prados, F. et al. Generalised boundary shift integral for longitudinal assessment of spinal cord atrophy. NeuroImage 209, 116489 (2020).

    Article  PubMed  Google Scholar 

  54. Oh, J. et al. The Canadian prospective cohort (canproco) study to understand progression in multiple sclerosis: rationale, aims, and study design. in 35th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, Stockholm, Sweden P753 (2019).

  55. Nestrasil, I. et al. Cervical spinal cord diffusion MRI and intraspinal space restriction at the occipito-cervical junction in mucopolysacharidoses patients. in Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada (2019).

  56. Querin, G. et al. Presymptomatic spinal cord pathology in c9orf72 mutation carriers: a longitudinal neuroimaging study. Ann. Neurol. 86, 158–167 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Querin, G. et al. The spinal and cerebral profile of adult spinal-muscular atrophy: a multimodal imaging study. Neuroimage Clin. 21, 101618 (2019).

    Article  PubMed  Google Scholar 

  58. Savini, G. et al. Pilot study on quantitative cervical cord and muscular MRI in spinal muscular atrophy: promising biomarkers of disease evolution and treatment? Front. Neurol. 12, 613834 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Martin, A. R. et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One 13, e0195733 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Martin, A. R. et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am. J. Neuroradiol. 38, 1266–1273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin, A. R. et al. Clinically feasible microstructural MRI to quantify cervical spinal cord tissue injury using DTI, MT, and T2*-weighted imaging: assessment of normative data and reliability. AJNR Am. J. Neuroradiol. 38, 1257–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karbasforoushan, H., Cohen-Adad, J. & Dewald, J. P. A. Brainstem and spinal cord MRI identifies altered sensorimotor pathways post-stroke. Nat. Commun. 10, 3524 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seif, M., Gandini Wheeler-Kingshott, C. A., Cohen-Adad, J., Flanders, A. E. & Freund, P. Guidelines for the conduct of clinical trials in spinal cord injury: neuroimaging biomarkers. Spinal Cord. 57, 717–728 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bagnato, F. et al. Imaging mechanisms of disease progression in multiple sclerosis: beyond brain atrophy. J. Neuroimaging 30, 251–266 (2020).

    Article  PubMed  Google Scholar 

  65. Tinnermann, A., Büchel, C. & Cohen-Adad, J. Cortico-spinal imaging to study pain. Neuroimage 224, 117439 (2020).

    Article  PubMed  Google Scholar 

  66. Cohen-Adad, J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 182, 169–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Wheeler-Kingshott, C. A. M. G. et al. Imaging spinal cord injury and assessing its predictive value—the INSPIRED study. in Wings for Life Scientific Meeting, Salzburg, Austria 29 (2017).

  68. Xu, J. et al. Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage 67, 64–76 (2013).

    Article  PubMed  Google Scholar 

  69. Summers, P. E., Brooks, J. & Cohen-Adad, J. Spinal cord fMRI. in Quantitative MRI of the Spinal Cord (Cohen-Adad, J. & Wheeler-Kingshott, C. A. M. eds) 221–236 (Academic Press, 2014).

  70. Fradet, L., Arnoux, P.-J., Ranjeva, J.-P., Petit, Y. & Callot, V. Morphometrics of the entire human spinal cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance imaging. Spine 39, E262–E269 (2014).

    Article  PubMed  Google Scholar 

  71. Yiannakas, M. C., Kakar, P., Hoy, L. R., Miller, D. H. & Wheeler-Kingshott, C. A. M. The use of the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3T. PLoS One 9, e105544 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. De Tillieux, P. D. et al. A pneumatic phantom for mimicking respiration-induced artifacts in spinal MRI. Magn. Reson. Med. 79, 600–605 (2018).

    Article  PubMed  CAS  Google Scholar 

  73. Massire, A. et al. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Magn. Reson. Med. 80, 947–957 (2018).

    Article  PubMed  Google Scholar 

  74. Massire, A. et al. High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T. Neuroimage 143, 58–69 (2016).

    Article  PubMed  Google Scholar 

  75. Li, D. K. B. et al. Developing a universally useful, useable and used standardized MRI protocol for patients with multiple sclerosis. in Proceedings of the 28th Annual Meeting of ISMRM, Sydney, Australia (2020).

  76. Stikov, N., Trzasko, J. D. & Bernstein, M. A. Reproducibility and the future of MRI research. Magn. Reson. Med. 82, 1981–1983 (2019).

    Article  PubMed  Google Scholar 

  77. Yiannakas, M. C. et al. Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Neuroimage 63, 1054–1059 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Verma, T. & Cohen-Adad, J. Effect of respiration on the B0 field in the human spinal cord at 3T. Magn. Reson. Med. 72, 1629–1636 (2014).

    Article  PubMed  Google Scholar 

  79. Song, S. K. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26, 132–140 (2005).

    Article  PubMed  Google Scholar 

  80. Jones, D. K. & Basser, P. J. ‘Squashing peanuts and smashing pumpkins’: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993 (2004).

    Article  PubMed  Google Scholar 

  81. Helms, G., Dathe, H., Kallenberg, K. & Dechent, P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn. Reson. Med. 60, 1396–1407 (2008).

    Article  PubMed  Google Scholar 

  82. Levy, S. et al. White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage 119, 262–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article  PubMed  Google Scholar 

  84. Saritas, E. U., Cunningham, C. H., Lee, J. H., Han, E. T. & Nishimura, D. G. DWI of the spinal cord with reduced FOV single-shot EPI. Magn. Reson. Med. 60, 468–473 (2008).

    Article  PubMed  Google Scholar 

  85. Finsterbusch, J. High-resolution diffusion tensor imaging with inner field-of-view EPI. J. Magn. Reson. Imaging 29, 987–993 (2009).

    Article  PubMed  Google Scholar 

  86. Wilm, B. J. et al. Diffusion-weighted imaging of the entire spinal cord. NMR Biomed. 22, 174–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Jeong, E.-K., Kim, S.-E., Guo, J., Kholmovski, E. G. & Parker, D. L. High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI). Magn. Reson. Med. 54, 1575–1579 (2005).

    Article  PubMed  Google Scholar 

  88. Samson, R. S. et al. ZOOM or Non-ZOOM? Assessing spinal cord diffusion tensor imaging protocols for multi-centre studies. PLoS One 11, e0155557 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Summers, P. et al. A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human. AJNR Am. J. Neuroradiol. 27, 1952–1961 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pfeuffer, J. et al. Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17, 272–286 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Moran and B. Schraa (Siemens Healthcare), S. Banerjee and N. Takei (GE Healthcare) for sharing proprietary information and for their help with setting up manufacturer-specific protocols, C. Hurst, A. Cyr, A. Boré and P. Bellec (Functional Neuroimaging Unit), C. Tremblay (Polytechnique Montreal), A. Melek and H. Benali (PERFORM center, Concordia University), I. Levesque (McGill University), C. Nguyen (University of Minnesota), Prof. S. Aoki (Juntendo University Hospital) for helping with data acquisitions, Compute Ontario (https://computeontario.ca/) and Compute Canada (www.computecanada.ca) for providing the supercomputer infrastructure and all the volunteers who participated in the Spinal Cord MRI Public Database. This work was funded by the Canada Research Chair in Quantitative Magnetic Resonance Imaging (950-230815), the Canadian Institute of Health Research (CIHR FDN-143263), the Canada Foundation for Innovation (32454, 34824), the Fonds de Recherche du Québec–Santé (28826), the Fonds de Recherche du Québec–Nature et Technologies (2015-PR-182754), the Natural Sciences and Engineering Research Council of Canada (435897-2013), the Canada First Research Excellence Fund (IVADO and TransMedTech), the Quebec BioImaging Network (5886), Spinal Research (UK), Wings for Life (Austria, #169111) and Craig H. Neilsen Foundation (USA) for the INSPIRED project, the National Institutes of Health (NIH) through grants R00EB016689 (R.L.B.), R01EB027779 (R.L.B.), P41 EB027061 (CMRR) and P30 NS076408 (CMRR), the Instituto Investigación Carlos III (Spain, PI18/00823), the Czech Health Research Council grant no. NV18-04-00159, the Ministry of Health, Czech Republic–conceptual development of research organization (FNBr, 65269705), the National Imaging Facility and Queensland NMR Network (UQ), and SpinalCure Australia (M.J.R.), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 616905; European Union’s Horizon 2020 research and innovation programme under the grant agreement No 681094, and the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0137; BMBF (01EW1711A & B) in the framework of ERA-NET NEURON, the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 634541, the Engineering and Physical Sciences Research Council (R006032/1, M020533/1) and Rosetrees Trust (UK), UK Multiple Sclerosis Society (892/08, 77/2017), NIHR Biomedical Research Centres, UCLH, the Italian Ministry of Health Young Researcher Grant 2013 (GR-2013-02358177), the FISR Project ‘Tecnopolo di nanotecnologia e fotonica per la medicina di precisione’ (funded by MIUR/CNR, CUP B83B17000010001), TECNOMED project (funded by Regione Puglia, CUP B84I18000540002), Million Dollar Bike Ride from the University of Pennsylvania (MDBR-17-123-MPS), investigator-initiated PREdICT study at the Vall d’Hebron Institute of Oncology (Barcelona), funded by AstraZeneca and CRIS Cancer Foundation, the Wellcome Trust (UK) (203139/Z/16/Z), Systems, Technologies and Applications for Radiofrequency and Communications (STARaCOM), Swiss National Science Foundation (PCEFP3_181362/1) and the Max Planck Society and European Research Council (ERC StG 758974). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Cohen-Adad.

Ethics declarations

Competing interests

G. Gilbert is an employee of Philips Healthcare.

Additional information

Peer review information Nature Protocols thanks Felix W. Wehrli and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Cohen-Adad, J. Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Sci. Data https://doi.org/10.1038/s41597-021-00941-8 (2021).

Karbasforoushan, H., Cohen-Adad, J. & Dewald, J. P. A. Nat. Commun. 10, 3524 (2019): https://doi.org/10.1038/s41467-019-11244-3

Martin, A. R. et al. AJNR Am. J. Neuroradiol. 38, 1257–1265 (2017): https://doi.org/10.3174/ajnr.A5163

Supplementary information

Supplementary Information

Supplementation Discussion and Supplementary Figs. 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen-Adad, J., Alonso-Ortiz, E., Abramovic, M. et al. Generic acquisition protocol for quantitative MRI of the spinal cord. Nat Protoc 16, 4611–4632 (2021). https://doi.org/10.1038/s41596-021-00588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00588-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing