Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High spatial and temporal resolution Ca2+ imaging of myocardial strips from human, pig and rat

Abstract

Ca2+ handling within cardiac myocytes underpins coordinated contractile function within the beating heart. This protocol enables high spatial and temporal Ca2+ imaging of ex vivo multicellular myocardial strips. The endocardial surface is retained, and strips of 150–300-µm thickness are dissected, loaded with Ca2+ indicators and mounted within 1.5 h. A list of the equipment and reagents used and the key methodological aspects allowing the use of this technique on strips from any chamber of the mammalian heart are described. We have successfully used this protocol on human, pig and rat biopsy samples. On use of this protocol with intact endocardial endothelium, we demonstrated that the myocytes develop asynchronous spontaneous Ca2+ events, which can be ablated by electrically evoked Ca2+ transients, and subsequently redevelop spontaneously after cessation of stimulation. This protocol thus offers a rapid and reliable method for studying the Ca2+ signaling underpinning cardiomyocyte contraction, in both healthy and diseased tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images of the three imaging chambers and mounted myocardial strips.
Fig. 2: Dissection, mounting and imaging myocardial strips.
Fig. 3: Spontaneous Ca2+ events in human atrial cardiomyocytes.
Fig. 4: Spontaneous Ca2+ events in porcine atrial cardiomyocytes.
Fig. 5: Spontaneous Ca2+ events in rat atrial cardiomyocytes.
Fig. 6: Ca2+ transients (CaTs) in rat atrial cardiomyocytes.
Fig. 7: Structure and viability of rat myocardial strips.
Fig. 8: Further applications.
Fig. 9: Translation to rat left ventricle myocardial strips.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Laver, D. R. Regulation of the RyR channel gating by Ca2+ and Mg2+. Biophys. Rev. 10, 1087–1095 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wagner, E., Brandenburg, S., Kohl, T. & Lehnart, S. E. Analysis of tubular membrane networks in cardiac myocytes from atria and ventricles. J. Vis. Exp. 92, e51823 (2014).

    Google Scholar 

  4. Yue, L., Feng, J., Li, G. R. & Nattel, S. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am. J. Physiol. Heart Circ. Physiol. 270, H2157–H2168 (1996).

    Article  CAS  Google Scholar 

  5. Schneider-Warme, F., Johnston, C. M. & Kohl, P. Organotypic myocardial slices as model system to study heterocellular interactions. Cardiovasc. Res. 114, 3–6 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Watson, S. A. et al. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nat. Protoc. 12, 2623–2639 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Perbellini, F. & Thum, T. Living myocardial slices: a novel multicellular model for cardiac translational research. Eur. Heart J. 41, 2405–2408 (2020).

    Article  PubMed  Google Scholar 

  8. Glukhov, A. V. et al. Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132, 2372–2384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brandenburg, S. et al. Axial tubule junctions control rapid calcium signaling in atria. J. Clin. Invest. 126, 3999–4015 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hove-Madsen, L. et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110, 1358–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Guatimosim, S., Guatimosim, C. & Song, L. S. Imaging calcium sparks in cardiac myocytes. Methods Mol. Biol. 689, 205–214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Apati, A. et al. Calcium signaling in pluripotent stem cells. Mol. Cell. Endocrinol. 353, 57–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Lamont, C., Luther, P. W., Balke, C. W. & Wier, W. G. Intercellular Ca2+ waves in rat heart muscle. J. Physiol. 512, 669–676 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wakayama, Y., Miura, M., Stuyvers, B. D., Boyden, P. A. & ter Keurs, H. E. Spatial nonuniformity of excitation-contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Circ. Res. 96, 1266–1273 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Wier, W. G., ter Keurs, H. E., Marban, E., Gao, W. D. & Balke, C. W. Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging. Circ. Res. 81, 462–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Slabaugh, J. L. et al. Synchronization of intracellular Ca2+ release in multicellular cardiac preparations. Front. Physiol. 9, 968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lou, Q. et al. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation 123, 1881–1890 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaneko, T., Tanaka, H., Oyamada, M., Kawata, S. & Takamatsu, T. Three distinct types of Ca2+ waves in Langendorff-perfused rat heart revealed by real-time confocal microscopy. Circ. Res. 86, 1093–1099 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, J. S., Small, D. M. & Nishimura, N. In vivo calcium imaging of cardiomyocytes in the beating mouse heart with multiphoton microscopy. Front. Physiol. 9, 969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujiwara, K., Tanaka, H., Mani, H., Nakagami, T. & Takamatsu, T. Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+–Ca2+ exchanger: simultaneous confocal recording of membrane potential and intracellular Ca2+ in the heart. Circ. Res. 103, 509–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Wasserstrom, J. A. et al. Variability in timing of spontaneous calcium release in the intact rat heart is determined by the time course of sarcoplasmic reticulum calcium load. Circ. Res. 107, 1117–1126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pillekamp, F. et al. Establishment and characterization of a mouse embryonic heart slice preparation. Cell. Physiol. Biochem. 16, 127–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Meyer, T., Stuerz, K., Guenther, E., Edamura, M. & Kraushaar, U. Cardiac slices as a predictive tool for arrhythmogenic potential of drugs and chemicals. Expert Opin. Drug Metab. Toxicol. 6, 1461–1475 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Bussek, A. et al. Cardiac tissue slices with prolonged survival for in vitro drug safety screening. J. Pharmacol. Toxicol. Methods 66, 145–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Brandenburger, M. et al. Organotypic slice culture from human adult ventricular myocardium. Cardiovasc. Res. 93, 50–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kang, C. et al. Human organotypic cultured cardiac slices: new platform for high throughput preclinical human trials. Sci. Rep. 6, 28798 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perbellini, F. et al. Investigation of cardiac fibroblasts using myocardial slices. Cardiovasc. Res. 114, 77–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Wen, Q. et al. Transverse cardiac slicing and optical imaging for analysis of transmural gradients in membrane potential and Ca2+ transients in murine heart. J. Physiol. 596, 3951–3965 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, K. et al. Cardiac tissue slices: preparation, handling, and successful optical mapping. Am. J. Physiol. Heart Circ. Physiol. 308, H1112–H1125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Camelliti, P. et al. Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies. J. Mol. Cell. Cardiol. 51, 390–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Bussek, A. et al. Tissue slices from adult mammalian hearts as a model for pharmacological drug testing. Cell. Physiol. Biochem. 24, 527–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Burdyga, T., Shmygol, A., Eisner, D. A. & Wray, S. A new technique for simultaneous and in situ measurements of Ca2+ signals in arteriolar smooth muscle and endothelial cells. Cell Calcium 34, 27–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Borisova, L., Wray, S., Eisner, D. A. & Burdyga, T. How structure, Ca signals, and cellular communications underlie function in precapillary arterioles. Circ. Res. 105, 803–810 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Borysova, L., Wray, S., Eisner, D. A. & Burdyga, T. How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone. Cell Calcium 54, 163–174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burdyga, T., Borisova, L., Burdyga, A. T. & Wray, S. Temporal and spatial variations in spontaneous Ca events and mechanical activity in pregnant rat myometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S25–S32 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Mumtaz, S., Burdyga, G., Borisova, L., Wray, S. & Burdyga, T. The mechanism of agonist induced Ca2+ signalling in intact endothelial cells studied confocally in in situ arteries. Cell Calcium 49, 66–77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borysova, L., Dora, K. A., Garland, C. J. & Burdyga, T. Smooth muscle gap-junctions allow propagation of intercellular Ca2+ waves and vasoconstriction due to Ca2+ based action potentials in rat mesenteric resistance arteries. Cell Calcium 75, 21–29 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kagemoto, T. et al. Sarcomeric auto-oscillations in single myofibrils from the heart of patients with dilated cardiomyopathy. Circ. Heart Fail. 11, e004333 (2018).

    Article  PubMed  Google Scholar 

  39. Bagher, P. et al. Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone. Proc. Natl Acad. Sci. USA. 109, 18174–18179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garland, C. J. et al. Voltage-dependent Ca2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Sci. Signal. 10, 1–14 (2017).

    Article  CAS  Google Scholar 

  41. Qiao, Y. et al. Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. Prog. Biophys. Mol. Biol. 144, 139–150 (2019).

    Article  PubMed  Google Scholar 

  42. Fischer, C. et al. Long-term functional and structural preservation of precision-cut human myocardium under continuous electromechanical stimulation in vitro. Nat. Commun. 10, 117 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Garger, J. C. et al. Guide for the Care and Use of Laboratory Animals 8th edn (National Academies Press, 2011).

  44. Gadeberg, H. C. et al. Heterogeneity of t-tubules in pig hearts. PLoS One 11, e0156862 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. McGrath, J. C. & Lilley, E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br. J. Pharmacol. 172, 3189–3193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sasaki, D., Fujita, H., Fukuda, N., Kurihara, S. & Ishiwata, S. Auto-oscillations of skinned myocardium correlating with heartbeat. J. Muscle Res. Cell Motil. 26, 93–101 (2005).

    Article  PubMed  Google Scholar 

  47. Zhao, G., Joca, H. C., Nelson, M. T. & Lederer, W. J. ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc. Natl Acad. Sci. USA. 117, 7461–7470 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the British Heart Foundation (BHF) and Medical Research Council (MRC) for grant awards to R.A. enhancing this work (grant numbers BHF PG/18/49/33833, BHF IG/14/2/30991, BHF/PG/16/104/32652 and MRC MR/L012723/1). Collection of human biopsy specimens in Bristol was supported by the NIHR Bristol Biomedical Research Centre. In addition, this work was supported by British Heart Foundation grants to K.A.D. (grant numbers FS/08/033/25111, FS/13/16/30199, IG/13/5/30431 and PG/18/11/33552) and by the Oxford BHF Centre of Research Excellence (RE/13/1/30181). We thank Theodore Burdyga at the University of Liverpool for use of the custom-built chambers and general protocols for using them and Carsten Thorndahl and Rene Hemmel at DMT for the development and supply of the Confocal Cardiac Myograph. We thank the research nurses, laboratory technicians and surgeons at the Bristol Heart Institute, University Hospital Bristol-Weston NHS Foundation Trust and the Bristol Trials Centre (Clinical Trials and Evaluation Unit) at the University of Bristol. We also thank the staff and researchers at the University of Bristol Translational Biomedical Research Centre, a national research facility for large animals co-funded by the BHF and MRC. Finally, we express our full gratitude to all the patients taking part in this study.

Author information

Authors and Affiliations

Authors

Contributions

K.A.D. wrote the manuscript, collected and analyzed data and contributed to the optimization of the protocol. L.B. and Y.Y.H.N. contributed to writing the manuscript. L.B., Y.Y.H.N., E.S.W. and L.E.W. collected and analyzed data and contributed to the optimization of the protocol. E.F. collected data. R.A. provided all human and porcine specimens and contributed to the manuscript. All authors proofread the manuscript.

Corresponding author

Correspondence to Kim A. Dora.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Filippo Perbellini, Thomas Seidel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Burdyga, T. et al. Cell Calcium 34, 27–33 (2003): https://doi.org/10.1016/s0143-4160(03)00019-8

Borisova, L. et al. Circ. Res. 105, 803–810 (2009): https://doi.org/10.1161/CIRCRESAHA.109.202960

Borysova, L. et al. Cell Calcium 75, 21–29 (2018): https://doi.org/10.1016/j.ceca.2018.08.001

Supplementary information

Supplementary Video 1

Cutting and pinning of porcine RAA

Supplementary Video 2

Cutting of porcine RAA into myocardial strips

Supplementary Video 3

Isolation of rat RAA from a whole heart

Supplementary Video 4

Cutting and pinning of rat RAA

Supplementary Video 5

Cutting of rat RAA into myocardial strips

Supplementary Video 6

Mounting of a rat RAA myocardial strip into three types of imaging chambers (#1, #2 and #3)

Supplementary Video 7

Spontaneous Ca2+ waves in a human RAA myocardial strip

Supplementary Video 8

Spontaneous Ca2+ sparks in a human RAA myocardial strip

Supplementary Video 9

Spontaneous Ca2+ waves in a porcine RAA myocardial strip

Supplementary Video 10

Spontaneous Ca2+ waves in a rat RAA myocardial strip

Supplementary Video 11

Electrically evoked CaTs in a rat RAA myocardial strip

Supplementary Video 12

Simultaneous imaging of cardiac and endocardial endothelial cell Ca2+ in a rat RAA myocardial strip

Supplementary Video 13

Isolation, cutting, pinning and dissection of rat ventricles followed by cutting of myocardial strips from a rat left ventricle

Supplementary Video 14

Spontaneous Ca2+ waves in a rat left ventricle myocardial strip

Supplementary Video 15

Electrically evoked CaTs in a rat left ventricle myocardial strip

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borysova, L., Ng, Y.Y.H., Wragg, E.S. et al. High spatial and temporal resolution Ca2+ imaging of myocardial strips from human, pig and rat. Nat Protoc 16, 4650–4675 (2021). https://doi.org/10.1038/s41596-021-00590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00590-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing