Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational Therapeutics

Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers

Abstract

Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer—hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)—are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-inhibitory ligand–receptor interactions in liver cancer.
Fig. 2: Mechanisms by which co-inhibitory immune checkpoint interactions suppress T cells.

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  2. Patel, T. Cholangiocarcinoma-controversies and challenges. Nat. Rev. Gastroenterol. Hepatol. 8, 189–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizvi, S. & Gores, G. J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145, 1215–1229 (2013).

    CAS  PubMed  Google Scholar 

  4. Razumilava, N. & Gores, G. J. Cholangiocarcinoma. Lancet 383, 2168–2179 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

    Article  PubMed  Google Scholar 

  6. Kudo, M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    CAS  PubMed  Google Scholar 

  7. Matsuda, Y. & Fukumoto, M. Sorafenib: complexities of Raf-dependent and Raf-independent signaling are now unveiled. Med. Mol. Morphol. 44, 183–189 (2011).

    CAS  PubMed  Google Scholar 

  8. Al-Salama, Z. T., Syed, Y. Y. & Scott, L. J. Lenvatinib: a review in hepatocellular carcinoma. Drugs 79, 665–674 (2019).

    CAS  PubMed  Google Scholar 

  9. Zhou, G., Sprengers, D., Mancham, S., Erkens, R., Boor, P. P. C., van Beek, A. A. et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. J. Hepatol. 71, 753–762 (2019).

  10. Zhou, G., Sprengers, D., Boor, P. P. C., Doukas, M., Schutz, H., Mancham, S. et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology 153, 1107–19 e10 (2017).

    CAS  PubMed  Google Scholar 

  11. Khair, D. O., Bax, H. J., Mele, S., Crescioli, S., Pellizzari, G., Khiabany, A. et al. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front. Immunol. 10, 453 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schadendorf, D., van Akkooi, A. C. J., Berking, C., Griewank, K. G., Gutzmer, R., Hauschild, A. et al. Melanoma. Lancet 392, 971–984 (2018).

    PubMed  Google Scholar 

  13. Hirsch, F. R., Suda, K., Wiens, J. & Bunn, P. A. Jr. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 388, 1012–1024 (2016).

    PubMed  Google Scholar 

  14. Vansteenkiste, J., Wauters, E., Reymen, B., Ackermann, C. J., Peters, S. & De Ruysscher, D. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann. Oncol. 30, 1244–1253 (2019).

    CAS  PubMed  Google Scholar 

  15. Atkins, M. B., Clark, J. I. & Quinn, D. I. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann. Oncol. 28, 1484–1494 (2017).

    CAS  PubMed  Google Scholar 

  16. Flecken, T., Schmidt, N., Hild, S., Gostick, E., Drognitz, O., Zeiser, R. et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 59, 1415–1426 (2014).

    CAS  PubMed  Google Scholar 

  17. Mizukoshi, E., Nakamoto, Y., Arai, K., Yamashita, T., Sakai, A., Sakai, Y. et al. Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53, 1206–1216 (2011).

    CAS  PubMed  Google Scholar 

  18. Pedroza-Gonzalez, A., Verhoef, C., Ijzermans, J. N., Peppelenbosch, M. P., Kwekkeboom, J., Verheij, J. et al. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology 57, 183–194 (2013).

    CAS  PubMed  Google Scholar 

  19. Gabrielson, A., Wu, Y., Wang, H., Jiang, J., Kallakury, B., Gatalica, Z. et al. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol. Res. 4, 419–430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sideras, K., Bots, S. J., Biermann, K., Sprengers, D., Polak, W. G., J. N., I. J. et al. Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area. Br. J. Cancer. 112, 1911–1920 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Loffler, M. W., Chandran, P. A., Laske, K., Schroeder, C., Bonzheim, I., Walzer, M. et al. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol. 65, 849–855 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Lee, J. S. The mutational landscape of hepatocellular carcinoma. Clin. Mol. Hepatol. 21, 220–229 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Zou, S., Li, J., Zhou, H., Frech, C., Jiang, X., Chu, J. S. et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 5, 5696 (2014).

    CAS  PubMed  Google Scholar 

  24. Tran, E., Turcotte, S., Gros, A., Robbins, P. F., Lu, Y. C., Dudley, M. E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  26. Pritchard, A. L., Burel, J. G., Neller, M. A., Hayward, N. K., Lopez, J. A., Fatho, M. et al. Exome sequencing to predict neoantigens in melanoma. Cancer Immunol. Res. 3, 992–998 (2015).

    CAS  PubMed  Google Scholar 

  27. Gao, Q., Zhu, H., Dong, L., Shi, W., Chen, R., Song, Z. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–77 e22 (2019).

    CAS  PubMed  Google Scholar 

  28. Losic, B., Craig, A. J., Villacorta-Martin, C., Martins-Filho, S. N., Akers, N., Chen, X. et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat. Commun. 11, 291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong, L. Q., Peng, L. H., Ma, L. J., Liu, D. B., Zhang, S., Luo, S. Z. et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma. J. Hepatol. 72, 896–908 (2020).

    CAS  PubMed  Google Scholar 

  30. Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. & van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44–51 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng, X. L., Chen, W., Cai, M. Y. & Wei, D. P. Expression of class I MHC molecule, HSP70 and TAP in human hepatocellular carcinoma. World J. Gastroenterol. 9, 1853–1855 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goeppert, B., Frauenschuh, L., Zucknick, M., Roessler, S., Mehrabi, A., Hafezi, M. et al. Major histocompatibility complex class I expression impacts on patient survival and type and density of immune cells in biliary tract cancer. Br. J. Cancer 113, 1343–1349 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sabbatino, F., Villani, V., Yearley, J. H., Deshpande, V., Cai, L., Konstantinidis, I. T. et al. PD-L1 and HLA class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin. Cancer Res. 22, 470–478 (2016).

    CAS  PubMed  Google Scholar 

  34. Schietinger, A., Philip, M., Krisnawan, V. E., Chiu, E. Y., Delrow, J. J., Basom, R. S. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, J., Lee, Y., Li, Y., Jiang, Y., Lu, H., Zang, W. et al. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8(+) T cells. Immunity 48, 773–786 e5 (2018).

    CAS  PubMed  Google Scholar 

  36. Scott, A. C., Dundar, F., Zumbo, P., Chandran, S. S., Klebanoff, C. A., Shakiba, M. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, C. G., Jang, M., Kim, Y., Leem, G., Kim, K. H., Lee, H. et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci. Immunol. 4, eaay0555 (2019).

  38. Morse, M. A., Sun, W., Kim, R., He, A. R., Abada, P. B., Mynderse, M. et al. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res. 25, 912–920 (2019).

    CAS  PubMed  Google Scholar 

  39. Guzman, A., Ziperstein, M. J. & Kaufman, L. J. The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments. Biomaterials 35, 6954–6963 (2014).

    CAS  PubMed  Google Scholar 

  40. Baker, E. L., Srivastava, J., Yu, D., Bonnecaze, R. T. & Zaman, M. H. Cancer cell migration: integrated roles of matrix mechanics and transforming potential. PLoS ONE 6, e20355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicolas-Boluda, A. & Donnadieu, E. Obstacles to T cell migration in the tumor microenvironment. Comp. Immunol. Microbiol. Infect. Dis. 63, 22–30 (2019).

    PubMed  Google Scholar 

  42. Lanitis, E., Dangaj, D., Irving, M. & Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28, xii18–xii32 (2017).

    CAS  PubMed  Google Scholar 

  43. Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y. et al. Role of chemokines in hepatocellular carcinoma (Review). Oncol. Rep. 45, 809–823 (2021).

    CAS  PubMed  Google Scholar 

  44. Chew, V., Lai, L., Pan, L., Lim, C. J., Li, J., Ong, R. et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc. Natl Acad. Sci. USA 114, E5900–E5909 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, C., Zheng, L., Yoo, J. K., Guo, H., Zhang, Y., Guo, X. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356 e16 (2017).

    CAS  PubMed  Google Scholar 

  46. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gotwals, P., Cameron, S., Cipolletta, D., Cremasco, V., Crystal, A., Hewes, B. et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 17, 286–301 (2017).

    CAS  PubMed  Google Scholar 

  48. Salama, A. K. & Moschos, S. J. Next steps in immuno-oncology: enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies. Ann. Oncol. 28, 57–74 (2017).

    CAS  PubMed  Google Scholar 

  49. Rotte, A., Jin, J. Y. & Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol. 29, 71–83 (2018).

    CAS  PubMed  Google Scholar 

  50. Han, Y., Chen, Z., Yang, Y., Jiang, Z., Gu, Y., Liu, Y. et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59, 567–579 (2014).

    CAS  PubMed  Google Scholar 

  51. Pedroza-Gonzalez, A., Zhou, G., Singh, S. P., Boor, P. P., Pan, Q., Grunhagen, D. et al. GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells. Oncoimmunology 4, e1051297 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Sangro, B., Gomez-Martin, C., de la Mata, M., Inarrairaegui, M., Garralda, E., Barrera, P. et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59, 81–88 (2013).

    CAS  PubMed  Google Scholar 

  53. Duffy, A. G., Ulahannan, S. V., Makorova-Rusher, O., Rahma, O., Wedemeyer, H., Pratt, D. et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 66, 545–551 (2017).

    CAS  PubMed  Google Scholar 

  54. Agdashian, D., ElGindi, M., Xie, C., Sandhu, M., Pratt, D., Kleiner, D. E. et al. The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T cells in patients with hepatocellular carcinoma. Cancer Immunol. Immunother. 68, 599–608 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Simpson, T. R., Li, F., Montalvo-Ortiz, W., Sepulveda, M. A., Bergerhoff, K., Arce, F. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Selby, M. J., Engelhardt, J. J., Quigley, M., Henning, K. A., Chen, T., Srinivasan, M. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    CAS  PubMed  Google Scholar 

  57. Romano, E., Kusio-Kobialka, M., Foukas, P. G., Baumgaertner, P., Meyer, C., Ballabeni, P. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie, C., Duffy, A. G., Mabry-Hrones, D., Wood, B., Levy, E., Krishnasamy, V. et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer. Hepatology 69, 2048–2060 (2019).

    CAS  PubMed  Google Scholar 

  59. U.S. National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/home.

  60. Wolchok, J. D., Chiarion-Sileni, V., Gonzalez, R., Rutkowski, P., Grob, J. J., Cowey, C. L. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600–1609 (2016).

    CAS  PubMed  Google Scholar 

  62. Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 17, 976–983 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Calderaro, J., Rousseau, B., Amaddeo, G., Mercey, M., Charpy, C., Costentin, C. et al. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology 64, 2038–2046 (2016).

    CAS  PubMed  Google Scholar 

  64. Sideras, K., Biermann, K., Verheij, J., Takkenberg, B. R., Mancham, S., Hansen, B. E. et al. PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. Oncoimmunology 6, e1273309 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Jung, H. I., Jeong, D., Ji, S., Ahn, T. S., Bae, S. H., Chin, S. et al. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. Treat. 49, 246–254 (2017).

    CAS  PubMed  Google Scholar 

  66. Xu, P., Sun, Z., Wang, Y. & Miao, C. Long-term use of indomethacin leads to poor prognoses through promoting the expression of PD-1 and PD-L2 via TRIF/NF-kappaB pathway and JAK/STAT3 pathway to inhibit TNF-alpha and IFN-gamma in hepatocellular carcinoma. Exp Cell Res. 337, 53–60 (2015).

    CAS  PubMed  Google Scholar 

  67. Kim, H. D., Song, G. W., Park, S., Jung, M. K., Kim, M. H., Kang, H. J. et al. Association between expression level of PD1 by tumor-infiltrating CD8(+) T cells and features of hepatocellular carcinoma. Gastroenterology 155, 1936–1950 e17 (2018).

    CAS  PubMed  Google Scholar 

  68. Wang, X., He, Q., Shen, H., Xia, A., Tian, W., Yu, W. et al. TOX promotes the exhaustion of antitumor CD8(+) T cells by preventing PD1 degradation in hepatocellular carcinoma. J. Hepatol. 71, 731–741 (2019).

    CAS  PubMed  Google Scholar 

  69. Lim, C. J., Lee, Y. H., Pan, L., Lai, L., Chua, C., Wasser, M. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68, 916–927 (2019).

    CAS  PubMed  Google Scholar 

  70. Wang, H., Rao, B., Lou, J., Li, J., Liu, Z., Li, A. et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front. Cell Dev. Biol. 8, 55 (2020).

    PubMed  PubMed Central  Google Scholar 

  71. Qi, X., Yang, M., Ma, L., Sauer, M., Avella, D., Kaifi, J. T. et al. Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response. J. Immunother. Cancer. 8, e001038 (2020).

  72. Xie, Q. K., Zhao, Y. J., Pan, T., Lyu, N., Mu, L. W., Li, S. L. et al. Programmed death ligand 1 as an indicator of pre-existing adaptive immune responses in human hepatocellular carcinoma. Oncoimmunology 5, e1181252 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Chen, Y., Ramjiawan, R. R., Reiberger, T., Ng, M. R., Hato, T., Huang, Y. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61, 1591–1602 (2015).

    CAS  PubMed  Google Scholar 

  74. Chen, D. P., Ning, W. R., Jiang, Z. Z., Peng, Z. P., Zhu, L. Y., Zhuang, S. M. et al. Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. J Hepatol. 71, 333–343 (2019).

    CAS  PubMed  Google Scholar 

  75. Shigeta, K., Datta, M., Hato, T., Kitahara, S., Chen, I. X., Matsui, A. et al. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology 71, 1247–1261 (2020).

    CAS  PubMed  Google Scholar 

  76. Xiang, J., Zhang, N., Sun, H., Su, L., Zhang, C., Xu, H. et al. Disruption of SIRT7 increases the efficacy of checkpoint inhibitor via MEF2D regulation of programmed cell death 1 ligand 1 in hepatocellular carcinoma cells. Gastroenterology 158, 664–78 e24 (2020).

    CAS  PubMed  Google Scholar 

  77. Zhou, J., Liu, M., Sun, H., Feng, Y., Xu, L., Chan, A. W. H. et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut 67, 931–944 (2018).

    CAS  PubMed  Google Scholar 

  78. Xiao, G., Jin, L. L., Liu, C. Q., Wang, Y. C., Meng, Y. M., Zhou, Z. G. et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J. Immunother. Cancer. 7, 300 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yau, T., Hsu, C., Kim, T. Y., Choo, S. P., Kang, Y. K., Hou, M. M. et al. Nivolumab in advanced hepatocellular carcinoma: sorafenib-experienced Asian cohort analysis. J. Hepatol. 71, 543–552 (2019).

    CAS  PubMed  Google Scholar 

  81. Zhu, A. X., Finn, R. S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19, 940–952 (2018).

    PubMed  Google Scholar 

  82. Finn, R. S., Ryoo, B. Y., Merle, P., Kudo, M., Bouattour, M., Lim, H. Y. et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, Phase III Trial. J. Clin. Oncol. 38, 193–202 (2020).

    CAS  PubMed  Google Scholar 

  83. Qin, S., Ren, Z., Meng, Z., Chen, Z., Chai, X., Xiong, J. et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 21, 571–580 (2020).

    CAS  PubMed  Google Scholar 

  84. Lee, D. W., Cho, E. J., Lee, J. H., Yu, S. J., Kim, Y. J., Yoon, J. H. et al. Phase II study of avelumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Clin. Cancer Res. 27, 713–718 (2021).

  85. Li, H., Li, X., Liu, S., Guo, L., Zhang, B., Zhang, J. et al. PD-1 Checkpoint blockade in combination with an mTOR inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology (2017).

  86. Finn, R. S., Qin, S., Ikeda, M., Galle, P. R., Ducreux, M., Kim, T. Y. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    CAS  PubMed  Google Scholar 

  87. Yau, T., Kang, Y. K., Kim, T. Y., El-Khoueiry, A. B., Santoro, A., Sangro, B. et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 6, e204564 (2020).

  88. Doi, T., Muro, K., Ishii, H., Kato, T., Tsushima, T., Takenoyama, M. et al. A Phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin. Cancer Res. 25, 6614–6622 (2019).

    CAS  PubMed  Google Scholar 

  89. Finn, R. S., Ikeda, M., Zhu, A. X., Sung, M. W., Baron, A. D., Kudo, M. et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J. Clin. Oncol. 38, 2960–2970 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Gani, F., Nagarajan, N., Kim, Y., Zhu, Q., Luan, L., Bhaijjee, F. et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 23, 2610–2617 (2016).

    PubMed  Google Scholar 

  91. Ma, K., Wei, X., Dong, D., Wu, Y., Geng, Q. & Li, E. PD-L1 and PD-1 expression correlate with prognosis in extrahepatic cholangiocarcinoma. Oncol. Lett. 14, 250–256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, L., Dong, H., Ni, S., Huang, D., Tan, C., Chang, B. et al. Programmed death-ligand 1 is upregulated in intrahepatic lymphoepithelioma-like cholangiocarcinoma. Oncotarget 7, 69749–69759 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Fontugne, J., Augustin, J., Pujals, A., Compagnon, P., Rousseau, B., Luciani, A. et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget 8, 24644–24651 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Walter, D., Herrmann, E., Schnitzbauer, A. A., Zeuzem, S., Hansmann, M. L., Peveling-Oberhag, J. et al. PD-L1 expression in extrahepatic cholangiocarcinoma. Histopathology 71, 383–392 (2017).

    PubMed  Google Scholar 

  95. Sato, Y., Kinoshita, M., Takemura, S., Tanaka, S., Hamano, G., Nakamori, S. et al. The PD-1/PD-L1 axis may be aberrantly activated in occupational cholangiocarcinoma. Pathol. Int. 67, 163–170 (2017).

    CAS  PubMed  Google Scholar 

  96. Sangkhamanon, S., Jongpairat, P., Sookprasert, A., Wirasorn, K., Titapun, A., Pugkhem, A. et al. Programmed Death-Ligand 1 (PD-L1) expression associated with a high neutrophil/lymphocyte ratio in cholangiocarcinoma. Asian Pac. J. Cancer Prev. 18, 1671–1674 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Lu, J. C., Zeng, H. Y., Sun, Q. M., Meng, Q. N., Huang, X. Y., Zhang, P. F. et al. Distinct PD-L1/PD1 profiles and clinical implications in intrahepatic cholangiocarcinoma patients with different risk factors. Theranostics 9, 4678–4687 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jusakul, A., Cutcutache, I., Yong, C. H., Lim, J. Q., Huang, M. N., Padmanabhan, N. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Montal, R., Sia, D., Montironi, C., Leow, W. Q., Esteban-Fabro, R., Pinyol, R. et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 73, 315–327 (2020).

  100. Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Marabelle, A., Le, D. T., Ascierto, P. A., Di Giacomo, A. M., De Jesus-Acosta, A., Delord, J. P. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 38, 1–10 (2020).

    CAS  PubMed  Google Scholar 

  102. Kim, R. D., Chung, V., Alese, O. B., El-Rayes, B. F., Li, D., Al-Toubah, T. E. et al. A Phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 6, 888–894 (2020).

    PubMed  Google Scholar 

  103. Klein, O., Kee, D., Nagrial, A., Markman, B., Underhill, C., Michael, M. et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a Phase 2 nonrandomized clinical trial. JAMA Oncol. 6, 1405–1409 (2020).

    PubMed  PubMed Central  Google Scholar 

  104. Oh, D. Y. Lee, K. H., Lee, D. W., Kim, T. Y., Bang, J. H., Nam, A. R., Lee, Y., Zhang, Q., Rebelatto, M., Li, W. & Kim, J. W. Phase II study assessing tolerability, efficacy, and biomarkers for durvalumab (D) ± tremelimumab (T) and gemcitabine/cisplatin (GemCis) in chemo-naïve advanced biliary tract cancer (aBTC). J. Clin. Oncol 38, 4520–4520 (2020).

  105. Suh, W. K., Gajewska, B. U., Okada, H., Gronski, M. A., Bertram, E. M., Dawicki, W. et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat. Immunol. 4, 899–906 (2003).

    CAS  PubMed  Google Scholar 

  106. Leitner, J., Klauser, C., Pickl, W. F., Stockl, J., Majdic, O., Bardet, A. F. et al. B7-H3 is a potent inhibitor of human T-cell activation: no evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol. 39, 1754–1764 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, C., Shen, Y., Qu, Q. X., Chen, X. Q., Zhang, X. G. & Huang, J. A. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res. 319, 96–102 (2013).

    CAS  PubMed  Google Scholar 

  108. Vigdorovich, V., Ramagopal, U. A., Lazar-Molnar, E., Sylvestre, E., Lee, J. S., Hofmeyer, K. A. et al. Structure and T cell inhibition properties of B7 family member, B7-H3. Structure 21, 707–717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Seaman, S., Zhu, Z., Saha, S., Zhang, X. M., Yang, M. Y., Hilton, M. B. et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31, 501–15 e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang, F. B., Wang, L., Li, D., Zhang, Y. G. & Sun, D. X. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression. Oncol. Rep. 33, 274–282 (2015).

    CAS  PubMed  Google Scholar 

  111. Kang, F. B., Wang, L., Jia, H. C., Li, D., Li, H. J., Zhang, Y. G. et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 15, 45 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Sun, T. W., Gao, Q., Qiu, S. J., Zhou, J., Wang, X. Y., Yi, Y. et al. B7-H3 is expressed in human hepatocellular carcinoma and is associated with tumor aggressiveness and postoperative recurrence. Cancer Immunol. Immunother. 61, 2171–2182 (2012).

    CAS  PubMed  Google Scholar 

  113. Zheng, Y., Liao, N., Wu, Y., Gao, J., Li, Z., Liu, W. et al. High expression of B7H2 or B7H3 is associated with poor prognosis in hepatocellular carcinoma. Mol. Med. Rep. 19, 4315–4325 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ni, L. & Dong, C. New checkpoints in cancer immunotherapy. Immunol. Rev. 276, 52–65 (2017).

    CAS  PubMed  Google Scholar 

  115. Cheng, R., Chen, Y., Zhou, H., Wang, B., Du, Q. & Chen, Y. B7-H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. APMIS 126, 396–402 (2018).

    CAS  PubMed  Google Scholar 

  116. Wang, X., Hao, J., Metzger, D. L., Ao, Z., Chen, L., Ou, D. et al. B7-H4 treatment of T cells inhibits ERK, JNK, p38, and AKT activation. PLoS ONE 7, e28232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Dangaj, D., Lanitis, E., Zhao, A., Joshi, S., Cheng, Y., Sandaltzopoulos, R. et al. Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res. 73, 4820–4829 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hong, B., Qian, Y., Zhang, H., Sang, Y. W., Cheng, L. F., Wang, Q. et al. Expression of B7-H4 and hepatitis B virus X in hepatitis B virus-related hepatocellular carcinoma. World J. Gastroenterol. 22, 4538–4546 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, X., Guo, F., Li, Z., Jiang, P., Deng, X., Tian, F. et al. Aberrant expression of B7-H4 correlates with poor prognosis and suppresses tumor-infiltration of CD8+ T lymphocytes in human cholangiocarcinoma. Oncol. Rep. 36, 419–427 (2016).

    CAS  PubMed  Google Scholar 

  120. Lines, J. L., Pantazi, E., Mak, J., Sempere, L. F., Wang, L., O’Connell, S. et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74, 1924–1932 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, L., Le Mercier, I., Putra, J., Chen, W., Liu, J., Schenk, A. D. et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl Acad. Sci. USA 111, 14846–14851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, L., Rubinstein, R., Lines, J. L., Wasiuk, A., Ahonen, C., Guo, Y. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Flies, D. B., Han, X., Higuchi, T., Zheng, L., Sun, J., Ye, J. J. et al. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J. Clin. Invest. 124, 1966–1975 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Le Mercier, I., Chen, W., Lines, J. L., Day, M., Li, J., Sergent, P. et al. VISTA regulates the development of protective antitumor immunity. Cancer Res. 74, 1933–1944 (2014).

    PubMed  Google Scholar 

  125. Lines, J. L., Sempere, L. F., Broughton, T., Wang, L. & Noelle, R. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol. Res. 2, 510–517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, J., Yuan, Y., Chen, W., Putra, J., Suriawinata, A. A., Schenk, A. D. et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl Acad. Sci. USA 112, 6682–6687 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, M., Pang, H. J., Zhao, W., Li, Y. F., Yan, L. X., Dong, Z. Y. et al. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma. BMC Cancer 18, 511 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Zhu, Y., Yao, S., Iliopoulou, B. P., Han, X., Augustine, M. M., Xu, H. et al. B7-H5 costimulates human T cells via CD28H. Nat. Commun. 4, 2043 (2013).

    PubMed  Google Scholar 

  129. Xiao, Y. & Freeman, G. J. A new B7:CD28 family checkpoint target for cancer immunotherapy: HHLA2. Clin. Cancer Res. 21, 2201–2203 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Janakiram, M., Chinai, J. M., Fineberg, S., Fiser, A., Montagna, C., Medavarapu, R. et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein. Clin. Cancer Res. 21, 2359–2366 (2015).

    CAS  PubMed  Google Scholar 

  131. Jing, C. Y., Fu, Y. P., Yi, Y., Zhang, M. X., Zheng, S. S., Huang, J. L. et al. HHLA2 in intrahepatic cholangiocarcinoma: an immune checkpoint with prognostic significance and wider expression compared with PD-L1. J. Immunother. Cancer. 7, 77 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Huang, Y. H., Zhu, C., Kondo, Y., Anderson, A. C., Gandhi, A., Russell, A. et al. Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 536, 359 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Das, M., Zhu, C. & Kuchroo, V. K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev. 276, 97–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, F., Liu, Y. & Chen, Z. Tim-3 expression and its role in hepatocellular carcinoma. J. Hematol. Oncol. 11, 126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Barathan, M., Gopal, K., Mohamed, R., Ellegard, R., Saeidi, A., Vadivelu, J. et al. Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes. Apoptosis 20, 466–480 (2015).

    CAS  PubMed  Google Scholar 

  136. Li, H., Wu, K., Tao, K., Chen, L., Zheng, Q., Lu, X. et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56, 1342–1351 (2012).

    CAS  PubMed  Google Scholar 

  137. Ji, J., Yin, Y., Ju, H., Xu, X., Liu, W., Fu, Q. et al. Long non-coding RNA Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC. Cell Death Dis. 9, 478 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Yan, W., Liu, X., Ma, H., Zhang, H., Song, X., Gao, L. et al. Tim-3 fosters HCC development by enhancing TGF-beta-mediated alternative activation of macrophages. Gut 64, 1593–1604 (2015).

  139. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    CAS  PubMed  Google Scholar 

  141. Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Goldberg, M. V. & Drake, C. G. LAG-3 in cancer immunotherapy. Curr. Top. Microbiol. Immunol. 344, 269–278 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Woo, S. R., Turnis, M. E., Goldberg, M. V., Bankoti, J., Selby, M., Nirschl, C. J. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    CAS  PubMed  Google Scholar 

  144. Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Xu, F., Liu, J., Liu, D., Liu, B., Wang, M., Hu, Z. et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 74, 3418–3428 (2014).

    CAS  PubMed  Google Scholar 

  146. Liu, W., Tang, L., Zhang, G., Wei, H., Cui, Y., Guo, L. et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J Biol. Chem. 279, 18748–18758 (2004).

    CAS  PubMed  Google Scholar 

  147. Wang, J., Sanmamed, M. F., Datar, I., Su, T. T., Ji, L., Sun, J. et al. Fibrinogen-like protein 1 Is a major immune inhibitory ligand of LAG-3. Cell 176, 334–47 e12 (2019).

    CAS  PubMed  Google Scholar 

  148. Le Mercier, I., Lines, J. L. & Noelle, R. J. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front. Immunol. 6, 418 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Hokuto, D., Sho, M., Yamato, I., Yasuda, S., Obara, S., Nomi, T. et al. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur. J. Cancer. 51, 157–165 (2015).

    CAS  PubMed  Google Scholar 

  150. Zhao, Q., Huang, Z. L., He, M., Gao, Z. & Kuang, D. M. BTLA identifies dysfunctional PD-1-expressing CD4(+) T cells in human hepatocellular carcinoma. Oncoimmunology 5, e1254855 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. Wu, Y., Kuang, D. M., Pan, W. D., Wan, Y. L., Lao, X. M., Wang, D. et al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology 57, 1107–1116 (2013).

    CAS  PubMed  Google Scholar 

  152. Joller, N., Lozano, E., Burkett, P. R., Patel, B., Xiao, S., Zhu, C. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gur, C., Ibrahim, Y., Isaacson, B., Yamin, R., Abed, J., Gamliel, M. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhu, Y., Paniccia, A., Schulick, A. C., Chen, W., Koenig, M. R., Byers, J. T. et al. Identification of CD112R as a novel checkpoint for human T cells. J. Exp. Med. 213, 167–176 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Martinet, L. & Smyth, M. J. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015).

    CAS  PubMed  Google Scholar 

  156. Johnston, R. J., Comps-Agrar, L., Hackney, J., Yu, X., Huseni, M., Yang, Y. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923–937 (2014).

    CAS  PubMed  Google Scholar 

  157. Chauvin, J. M., Pagliano, O., Fourcade, J., Sun, Z., Wang, H., Sander, C. et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J. Clin. Invest. 125, 2046–2058 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Kung-Chun Chiu, D., Wai-Hin Yuen, V., Wing-Sum Cheu, J., Wei, L. L., Ting, V., Fehlings, M. et al. Hepatocellular carcinoma cells upregulate PVRL1, stabilizing PVR and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology. 159, 609–623 (2020).

  159. Duan, X., Liu, J., Cui, J., Ma, B., Zhou, Q., Yang, X. et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol. Med. Rep. 20, 3773–3781 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sun, H., Huang, Q., Huang, M., Wen, H., Lin, R., Zheng, M. et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70, 168–183 (2019).

    CAS  PubMed  Google Scholar 

  161. Ge, Z., Zhou, G., Carrascosa, L. C., Gausvik, E., Boor, P. P. C., Noordam, L. et al. TIGIT and PD1 Co-blockade restores ex vivo functions of human tumor-infiltrating CD8(+) T cells in hepatocellular carcinoma. Cell Mol. Gastroenterol. Hepatol. S2352-345X(21)00055-2. https://doi.org/10.1016/j.jcmgh.2021.03.003 (2021).

  162. Huang, D. W., Huang, M., Lin, X. S. & Huang, Q. CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. Onco Targets Ther. 10, 3817–3825 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Sanmamed, M. F., Pastor, F., Rodriguez, A., Perez-Gracia, J. L., Rodriguez-Ruiz, M. E., Jure-Kunkel, M. et al. Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin. Oncol. 42, 640–655 (2015).

    CAS  PubMed  Google Scholar 

  164. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  165. Xie, K., Xu, L., Wu, H., Liao, H., Luo, L., Liao, M. et al. OX40 expression in hepatocellular carcinoma is associated with a distinct immune microenvironment, specific mutation signature, and poor prognosis. Oncoimmunology 7, e1404214 (2018).

    PubMed  PubMed Central  Google Scholar 

  166. Campos Carrascosa, L., van Beek, A. A., de Ruiter, V., Doukas, M., Wei, J., Fisher, T. S. et al. FcgammaRIIB engagement drives agonistic activity of Fc-engineered alphaOX40 antibody to stimulate human tumor-infiltrating T cells. J. Immunother. Cancer. 8, 2 (2020).

    Google Scholar 

  167. Zhang, Y., Zhang, H., Wei, M., Mou, T., Shi, T., Ma, Y. et al. Recombinant adenovirus expressing a soluble fusion protein PD-1/CD137L subverts the suppression of CD8(+) T cells in HCC. Mol. Ther. 27, 1906–1918 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, H. D., Park, S., Jeong, S., Lee, Y. J., Lee, H., Kim, C. G. et al. 4-1BB delineates distinct activation status of exhausted tumor-infiltrating CD8(+) T cells in hepatocellular carcinoma. Hepatology 71, 955–971 (2020).

    CAS  PubMed  Google Scholar 

  169. van Beek, A. A., Zhou, G., Doukas, M., Boor, P. P. C., Noordam, L., Mancham, S. et al. GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int. J. Cancer. 145, 1111–1124 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. Salmon, H., Franciszkiewicz, K., Damotte, D., Dieu-Nosjean, M. C., Validire, P., Trautmann, A. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Shaikh, F. Y., Gills, J. J. & Sears, C. L. Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine 48, 642–647 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Nagasaka, M., Sexton, R., Alhasan, R., Rahman, S., Azmi, A. S. & Sukari, A. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer—a review. Crit. Rev. Oncol. Hematol. 145, 102841 (2020).

    PubMed  Google Scholar 

  173. Fidelle, M., Yonekura, S., Picard, M., Cogdill, A., Hollebecque, A., Roberti, M. P. et al. Resolving the paradox of colon cancer through the integration of genetics, immunology, and the microbiota. Front. Immunol. 11, 600886 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Koulouridi, A., Messaritakis, I., Gouvas, N., Tsiaoussis, J. & Souglakos, J. Immunotherapy in solid tumors and gut microbiota: the correlation—a special reference to colorectal cancer. Cancers (Basel) 13, 43 (2020).

  175. Spahn, S., Roessler, D., Pompilia, R., Gabernet, G., Gladstone, B. P., Horger, M. et al. Clinical and genetic tumor characteristics of responding and non-responding patients to PD-1 inhibition in hepatocellular carcinoma. Cancers (Basel) 12, 383 (2020).

  176. Ruiz de Galarreta, M., Bresnahan, E., Molina-Sanchez, P., Lindblad, K. E., Maier, B., Sia, D. et al. beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    CAS  PubMed  Google Scholar 

  177. Harding, J. J., Nandakumar, S., Armenia, J., Khalil, D. N., Albano, M., Ly, M. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25, 2116–2126 (2019).

    CAS  PubMed  Google Scholar 

  178. Lee, M. S., Ryoo, B. Y., Hsu, C. H., Numata, K., Stein, S., Verret, W. et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 21, 808–820 (2020).

    CAS  PubMed  Google Scholar 

  179. Yarchoan, M., Xing, D., Luan, L., Xu, H., Sharma, R., Popovic, A. et al. Characterization of the immune microenvironment in hepatocellular carcinoma (HCC). Clin. Cancer Res. 23, 7333–7339 (2017).

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. contributed to drafting and revising the manuscript, making figures and tables. P.B. contributed to drafting the manuscript. M.B. and D.S. contributed to revising the manuscript. J.K. contributed to drafting and revising the manuscript.

Corresponding author

Correspondence to Guoying Zhou.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent to publish

Yes.

Data availability

Not applicable.

Competing interests

The authors declare no competing interests.

Funding information

No.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Boor, P.P.C., Bruno, M.J. et al. Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. Br J Cancer 126, 10–23 (2022). https://doi.org/10.1038/s41416-021-01453-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01453-3

This article is cited by

Search

Quick links