Skip to main content
Log in

Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In recent years, graphene and other two-dimensional Dirac materials like silicene, germanene, etc. have been studied from different points of view: from mathematical physics, condensed matter physics to high energy physics. In this study, we utilize both supersymmetric quantum mechanics (SUSY-QM) and transfer matrix method (TTM) to examine electronic transport in two-dimensional Dirac materials under the influences of multi-step deformation as well as multi-step Fermi velocity barrier. The effects of multi-step effective mass and multi-step applied fields are also taken into account in our investigation. Results show the possibility of modulating the Klein tunneling of Dirac electron using strain or electric field.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All necessary formulas and equations to compute the data are given in this manuscript.]

Notes

  1. All the calculations in this work will be carried out with the use of the following dimensionless units because of their convenience: the lattice constant \(a_0\), \(v_\mathrm{F}\), \(B_0= \hbar e^{-1} a_0^{-2}\), \(E_0 =\hbar v_\mathrm{F} e^{-1} a_0^{-2}\), \(\varepsilon _0 = \hbar v_\mathrm{F} a_0^{-1}\) as units of length, velocity, magnetic field strength, electric field strength and energy, respectively. Formally, we can set \(e=\hbar =v_\mathrm{F}=1\).

  2. We put the expression of \(U_B\) (and also \(U_E\), see in the text) in Appendix A to avoid making the main argument lengthy.

  3. The formula to calculate these quantities are given in Appendix B.

  4. Of course, these definitions only make sense when \(|\sin \alpha _{c,\pm }| \le 1\).

  5. The signs of \(s_{1,2}^{B,E}\) must satisfy the constraint \(\det U=1\), or equivalently, \((s_1^B s_2^B)^{-1} = -2 (q_\mathrm{m}+q_\phi ) \sqrt{Q}\) for B-case and \((s_1^E s_2^E)^{-1} = 4 (q_\mathrm{m}+q_\phi ) \sqrt{Q}\) for E-case.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197 (2005). https://doi.org/10.1038/nature04233

    Article  ADS  Google Scholar 

  2. C.-C. Liu, H. Jiang, Y. Yao, Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011). https://doi.org/10.1103/PhysRevB.84.195430

    Article  ADS  Google Scholar 

  3. C.-C. Liu, W. Feng, Y. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011). https://doi.org/10.1103/PhysRevLett.107.076802

    Article  ADS  Google Scholar 

  4. T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Dirac materials. Adv. Phys. 63(1), 1–76 (2014). https://doi.org/10.1080/00018732.2014.927109

    Article  ADS  Google Scholar 

  5. L.M. Woods, D.A.R. Dalvit, A. Tkatchenko, P. Rodriguez-Lopez, A.W. Rodriguez, R. Podgornik, Materials perspective on casimir and van der waals interactions. Rev. Mod. Phys. 88, 045003 (2016). https://doi.org/10.1103/RevModPhys.88.045003

    Article  MathSciNet  ADS  Google Scholar 

  6. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201 (2005). https://doi.org/10.1038/nature04235

    Article  ADS  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Modern Phys. 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  8. M. Tahir, U. Schwingenschlögl, Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013). https://doi.org/10.1038/srep01075

    Article  ADS  Google Scholar 

  9. M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschlögl, Quantum spin/valley hall effect and topological insulator phase transitions in silicene. Appl. Phys. Lett. 102(16), 162412 (2013). https://doi.org/10.1063/1.4803084

    Article  ADS  Google Scholar 

  10. L. Matthes, O. Pulci, F. Bechstedt, Massive dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J Phys. Condens. Matter 25(39), 395303 (2013). https://doi.org/10.1088/0953-8984/25/39/395305

    Article  Google Scholar 

  11. J. Wang, S. Deng, Z. Liu, Z. Liu, The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2(1), 22–39 (2015). https://doi.org/10.1093/nsr/nwu080

    Article  Google Scholar 

  12. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the klein paradox in graphene. Nature Phys. 2, 620–625 (2006). https://doi.org/10.1038/nphys384

    Article  ADS  Google Scholar 

  13. O. Klein, Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von dirac. Zeitschr. für Phys. 53(3–4), 157–165 (1929)

    Article  ADS  Google Scholar 

  14. A. Calogeracos, N. Dombey, History and physics of the klein paradox. Contemp. Phys. 40(5), 313–321 (1999). https://doi.org/10.1080/001075199181387

    Article  MATH  ADS  Google Scholar 

  15. C.J. Tabert, E.J. Nicol, Magneto-optical conductivity of silicene and other buckled honeycomb lattices. Phys. Rev. B 88, 085434 (2013). https://doi.org/10.1103/PhysRevB.88.085434

    Article  ADS  Google Scholar 

  16. Ş. Kuru, J. Negro, L.M. Nieto, Exact analytic solutions for a dirac electron moving in graphene under magnetic fields. J. Phys. Condens. Matter 21(45), 455305 (2009). https://doi.org/10.1088/0953-8984/21/45/455305

    Article  ADS  Google Scholar 

  17. M.R. Masir, P. Vasilopoulos, F.M. Peeters, Graphene in inhomogeneous magnetic fields: bound, quasi-bound and scattering states. J. Phys. Condens. Matter 23(31), 315301 (2011). https://doi.org/10.1088/0953-8984/23/31/315301

    Article  Google Scholar 

  18. P. Roy, T.K. Ghosh, K. Bhattacharya, Localization of dirac-like excitations in graphene in the presence of smooth inhomogeneous magnetic fields. J. Phys. Condens. Matter 24(5), 055301 (2012). https://doi.org/10.1088/0953-8984/24/5/055301

    Article  ADS  Google Scholar 

  19. C.A. Downing, M.E. Portnoi, Massless dirac fermions in two dimensions: Confinement in nonuniform magnetic fields. Phys. Rev. B 94, 165407 (2016). https://doi.org/10.1103/PhysRevB.94.165407

    Article  ADS  Google Scholar 

  20. D.-N. Le, P.-S. Luu, T.-S. Ha, N.-H. Phan, V.-H. Le, Bound states of (2+1)-dimensional massive dirac fermions in a lorentzian-shaped inhomogeneous perpendicular magnetic field. Phys. E Low-Dimens. Syst. Nanostruct. 116, 113777 (2020). https://doi.org/10.1016/j.physe.2019.113777

    Article  Google Scholar 

  21. M.O. Goerbig, Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011). https://doi.org/10.1103/RevModPhys.83.1193

    Article  ADS  Google Scholar 

  22. M.R. Masir, P. Vasilopoulos, F.M. Peeters, Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures. Appl. Phys. Lett. 93(24), 242103 (2008). https://doi.org/10.1063/1.3049600

    Article  ADS  Google Scholar 

  23. L. Dell’Anna, A. De Martino, Multiple magnetic barriers in graphene. Phys. Rev. B 79, 045420 (2009). https://doi.org/10.1103/PhysRevB.79.045420

    Article  ADS  Google Scholar 

  24. H. Nguyen-Truong, V.V. On, M.-F. Lin, Optical absorption spectra of Xene and Xane (X \(=\) silic, german, stan). J. Phys. Condens. Matter 33(35), 355701 (2021)

  25. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012). https://doi.org/10.1103/PhysRevB.85.075423

    Article  ADS  Google Scholar 

  26. D.-N. Le, V.-H. Le, P. Roy, Modulation of landau levels and de haas-van alphen oscillation in magnetized graphene by uniaxial tensile strain/ stress. J. Magn. Magn. Mater. 2020, 167473 (2020). https://doi.org/10.1016/j.jmmm.2020.167473. arXiv:2009.14423

    Article  Google Scholar 

  27. M.A.H. Vozmediano, F. de Juan, A. Cortijo, Gauge fields and curvature in graphene. J. Phys. Conf. Ser. 129, 012001 (2008). https://doi.org/10.1088/1742-6596/129/1/012001

    Article  Google Scholar 

  28. M. Vozmediano, M. Katsnelson, F. Guinea, Gauge fields in graphene. Phys. Rep. 496(4), 109–148 (2010). https://doi.org/10.1016/j.physrep.2010.07.003

    Article  MathSciNet  ADS  Google Scholar 

  29. V.M. Pereira, A.H. Castro Neto, Strain engineering of graphene’s electronic structure. Phys. Rev. Lett. 103(4), 046801 (2009). https://doi.org/10.1103/PhysRevLett.103.046801

    Article  ADS  Google Scholar 

  30. T. Low, F. Guinea, Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 10(9), 3551–3554 (2010). https://doi.org/10.1021/nl1018063

    Article  ADS  Google Scholar 

  31. N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H.C. Neto, M.F. Crommie, Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329(5991), 544–547 (2010). https://doi.org/10.1126/science.1191700

    Article  ADS  Google Scholar 

  32. F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nature Phys. 6(1), 30–33 (2010). https://doi.org/10.1038/nphys1420. arXiv:0909.1787

    Article  ADS  Google Scholar 

  33. F. de Juan, J.L. Manes, M.A.H. Vozmediano, Gauge fields from strain in graphene. Phys. Rev. B 87, 165131 (2013). https://doi.org/10.1103/PhysRevB.87.165131

    Article  ADS  Google Scholar 

  34. A. Raoux, M. Polini, R. Asgari, A.R. Hamilton, R. Fazio, A.H. MacDonald, Velocity-modulation control of electron-wave propagation in graphene. Phys. Rev. B 81, 073407 (2010). https://doi.org/10.1103/PhysRevB.81.073407

    Article  ADS  Google Scholar 

  35. F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Transport properties of graphene across strain-induced nonuniform velocity profiles. Phys. Rev. B 84, 195404 (2011). https://doi.org/10.1103/PhysRevB.84.195404

    Article  ADS  Google Scholar 

  36. F. de Juan, M. Sturla, M.A.H. Vozmediano, Space dependent fermi velocity in strained graphene. Phys. Rev. Lett. 108, 227205 (2012). https://doi.org/10.1103/PhysRevLett.108.227205

    Article  ADS  Google Scholar 

  37. S. Barraza-Lopez, A.A. Pacheco Sanjuan, Z. Wang, M. Vanević, Strain-engineering of graphene’s electronic structure beyond continuum elasticity. Solid State Commun. 166, 70–75 (2013). https://doi.org/10.1016/j.ssc.2013.05.002

    Article  ADS  Google Scholar 

  38. J.V. Sloan, A.A.P. Sanjuan, Z. Wang, C. Horvath, S. Barraza-Lopez, Strain gauge fields for rippled graphene membranes under central mechanical load: an approach beyond first-order continuum elasticity. Phys. Rev. B 87, 155436 (2013). https://doi.org/10.1103/PhysRevB.87.155436

    Article  ADS  Google Scholar 

  39. A.A. Pacheco-Sanjuan, Z. Wang, H.P. Imani, M. Vanević, S. Barraza-Lopez, Graphene’s morphology and electronic properties from discrete differential geometry. Phys. Rev. B 89, 121403 (2014). https://doi.org/10.1103/PhysRevB.89.121403

    Article  ADS  Google Scholar 

  40. M. Oliva-Leyva, G.G. Naumis, Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain. Phys. Lett. Sect. A Gener. Atom. Solid State Phys. 379(40–41), 2645–2651 (2015). https://doi.org/10.1016/j.physleta.2015.05.039

    Article  MATH  Google Scholar 

  41. C.A. Downing, M.E. Portnoi, Localization of massless Dirac particles via spatial modulations of the Fermi velocity. J. Phys. Condens. Matter 29(31), 315301 (2017). https://doi.org/10.1088/1361-648X/aa7884

    Article  Google Scholar 

  42. G.G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones, Electronic and optical properties of strained graphene and other strained 2d materials: a review. Rep. Progress Phys. 80(9), 096504 (2017). https://doi.org/10.1088/1361-6633/aa74ef

    Article  ADS  Google Scholar 

  43. E. Lantagne-Hurtubise, X.-X. Zhang, M. Franz, Dispersive landau levels and valley currents in strained graphene nanoribbons. Phys. Rev. B 101, 085423 (2020). https://doi.org/10.1103/PhysRevB.101.085423

    Article  ADS  Google Scholar 

  44. B. Dong, W. Sun, D. Liu, N. Ma, The mechanical strain induced anomalous de haas-van alphen effect on graphene. Phys. B Condens. Matter 577, 411824 (2020). https://doi.org/10.1016/j.physb.2019.411824

    Article  Google Scholar 

  45. D.-N. Le, V.-H. Le, P. Roy, Graphene under uniaxial inhomogeneous strain and an external electric field: Landau levels, electronic, magnetic and optical properties. Eur. Phys. J. B 93(8), 158 (2020). https://doi.org/10.1140/epjb/e2020-10222-3

    Article  ADS  Google Scholar 

  46. F. Zhai, X. Zhao, K. Chang, H.Q. Xu, Magnetic barrier on strained graphene: a possible valley filter. Phys. Rev. B 82, 115442 (2010). https://doi.org/10.1103/PhysRevB.82.115442

    Article  ADS  Google Scholar 

  47. Y. Betancur-Ocampo, P. Majari, D. Espitia, F. Leyvraz, T. Stegmann, Anomalous Floquet tunneling in uniaxially strained graphene. Phys. Rev. B 103(15), 155433 (2021)

  48. P. Ghosh, P. Roy, Bound states in graphene via Fermi velocity modulation. Eur. Phys. J. Plus 132(1), 32 (2017). https://doi.org/10.1140/epjp/i2017-11323-2

    Article  Google Scholar 

  49. A.-L. Phan, D.-N. Le, V.-H. Le, P. Roy, Electronic spectrum in 2d dirac materials under strain. Phys. E Low-Dimens. Syst. Nanostruct. 121, 114084 (2020). https://doi.org/10.1016/j.physe.2020.114084

    Article  Google Scholar 

  50. R. Ghosh, (1+1)-dimensional Dirac equation in an effective mass theory under the influence of local fermi velocity (2021). arXiv:2107.01668

  51. M. Oliva-Leyva, J.E. Barrios-Vargas, G.G. de la Cruz, Effective magnetic field induced by inhomogeneous fermi velocity in strained honeycomb structures. Phys. Rev. B 102, 035447 (2020). https://doi.org/10.1103/PhysRevB.102.035447

    Article  ADS  Google Scholar 

  52. Í.S.F. Bezerra, J.R. Lima, Effects of fermi velocity engineering in magnetic graphene superlattices. Phys. E Low-Dimens. Syst. Nanostruct. 123, 114171 (2020). https://doi.org/10.1016/j.physe.2020.114171

    Article  Google Scholar 

  53. L.-G. Wang, S.-Y. Zhu, Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers. Phys. Rev. B 81, 205444 (2010). https://doi.org/10.1103/PhysRevB.81.205444

    Article  ADS  Google Scholar 

  54. N.M.R. Peres, Scattering in one-dimensional heterostructures described by the dirac equation. J. Phys. Condens. Matter 21(9), 095501 (2009). https://doi.org/10.1088/0953-8984/21/9/095501

    Article  ADS  Google Scholar 

  55. V. Lukose, R. Shankar, G. Baskaran, Novel electric field effects on landau levels in graphene. Phys. Rev. Lett. 98, 116802 (2007). https://doi.org/10.1103/PhysRevLett.98.116802

    Article  ADS  Google Scholar 

  56. F. Cooper, A. Khare, U. Sukhatme, Super symmetry and quantum mechanics. Phys. Rep 251(5), 267–385 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  57. R. Yekken, M. Lassaut, R. Lombard, Applying supersymmetry to energy dependent potentials. Ann. Phys. 338, 195–206 (2013)

  58. Y. Concha, A. Huet, A. Raya, D. Valenzuela, Supersymmetric quantum electronic states in graphene under uniaxial strain. Mater. Res. Express 5(6), 065607 (2018)

  59. B. Bagchi, R. Ghosh, Dirac Hamiltonian in a supersymmetric framework. J. Math. Phys. 62(7), 072101 (2021)

  60. L.Z. Tan, C.-H. Park, S.G. Louie, Graphene dirac fermions in one-dimensional inhomogeneous field profiles: transforming magnetic to electric field. Phys. Rev. B 81, 195426 (2010). https://doi.org/10.1103/PhysRevB.81.195426

    Article  ADS  Google Scholar 

  61. L. Liu, Y.X. Li, J.J. Liu, Transport properties of Dirac electrons in graphene based double velocity-barrier structures in electric and magnetic fields. Phys. Lett. Sect. A Gener. Atom. Solid State Phys. 376(45), 3342–3350 (2012). https://doi.org/10.1016/j.physleta.2012.08.047

  62. Q. Wilmart, S. Berrada, D. Torrin, V.H. Nguyen, G. Fève, J.-M. Berroir, P. Dollfus, B. Plaçais, A klein-tunneling transistor with ballistic graphene. 2D Mater. 1(1), 011006 (2014). https://doi.org/10.1088/2053-1583/1/1/011006

    Article  Google Scholar 

  63. D.-N. Le, A.-L. Phan, V.-H. Le, P. Roy, Spherical fullerene molecules under the influence of electric and magnetic fields. Phys. E Low-Dimens. Syst. Nanostruct. 107, 60–66 (2019). https://doi.org/10.1016/j.physe.2018.11.004

    Article  ADS  Google Scholar 

  64. D.-N. Le, V.-H. Le, P. Roy, Electric field and curvature effects on relativistic landau levels on a pseudosphere. J. Phys. Condens. Matter 31(30), 305301 (2019). https://doi.org/10.1088/1361-648x/ab19c1

    Article  Google Scholar 

  65. A.-L. Phan, D.-N. Le, V.-H. Le, P. Roy, The influence of electric field and geometry on relativistic landau levels in spheroidal fullerene molecules. Phys. E Low-Dimens. Syst. Nanostruct. 114, 113639 (2019). https://doi.org/10.1016/j.physe.2019.113639

    Article  Google Scholar 

  66. D.-N. Le, V.-H. Le, P. Roy, Orbital magnetization in axially symmetric two-dimensional carbon allotrope: influence of electric field and geometry. J. Phys. Condens. Matter 32(38), 385703 (2020). https://doi.org/10.1088/1361-648x/ab940a

    Article  ADS  Google Scholar 

  67. D.J. Fernández, D.I. Martínez-Moreno, Bilayer graphene coherent states. Eur. Phys. J. Plus 135, 739 (2020). https://doi.org/10.1140/epjp/s13360-020-00746-5

    Article  Google Scholar 

  68. G. Wagner, D.X. Nguyen, S.H. Simon, Transport properties of multilayer graphene. Phys. Rev. B 101, 245438 (2020). https://doi.org/10.1103/PhysRevB.101.245438

    Article  ADS  Google Scholar 

  69. Y. Betancur-Ocampo, E. D’iaz-Bautista, T. Stegmann, Valley-dependent time evolution of coherent electron states in tilted anisotropic Dirac materials (2021). arXiv:2107.04160

Download references

Acknowledgements

One of the authors, Dai-Nam Le, was funded by Vingroup Joint Stock Company and supported by the Domestic Master/ PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), code: VINIF.2020.TS.03. The author Anh-Luan Phan would like to express his great gratitude to his beloved mother for her support in the period of time he conducted this work. The authors also thank Professor Van-Hoang Le (Department of Physics, Ho Chi Minh City University of Education, Vietnam) for encouragement and Professor Pinaki Roy (Atomic Molecular and Optical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam) for suggesting the problem and going through the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Dai-Nam Le.

Appendices

Appendix A. The pseudo-spinor rotations

A general rotation \(U(\alpha ,\beta ,\gamma )\) of the pseudo-spinor has the form

$$\begin{aligned}&K(w) = U G(w) = \exp \nonumber \\&\quad \left[ \alpha /2 \left( \sigma _y \cos \beta + \sigma _z \sin \beta \cos \gamma + \sigma _x \sin \beta \sin \gamma \right) \right] G(w),\nonumber \\ \end{aligned}$$
(44)

where \(\alpha \), \(\beta \) and \(\gamma \) are the three degrees of freedom (the fourth one is canceled by imposing the constraint \(\det U = 1\)). Using this rotation, we can transform the equation for K(w) into an equation for G(w)

$$\begin{aligned}&\left\{ -i \sigma _x \partial _w + \sigma _y \left[ {\tilde{k}} + {\tilde{A}}(w) \right] + \sigma _z {\tilde{\Delta }}(w)/2 + {\tilde{\phi }}(w) - {\tilde{\varepsilon }} \right\} \nonumber \\&\quad G(w) = 0, \end{aligned}$$
(45)

with

$$\begin{aligned}&{\tilde{A}}(w) = \bigg [\sinh ^2 \dfrac{\alpha }{2} \sin ^2\beta \left( i q_\phi \sin 2\gamma - q_\mathrm{v} (k+A_0) \cos 2\gamma \right) \nonumber \\&\qquad \qquad + \sinh ^2 \dfrac{\alpha }{2} \left( \dfrac{1}{2} q_v (k+A_0) \cos 2\beta + q_\mathrm{m} \sin 2\beta \cos \gamma \right) \nonumber \\&\qquad \qquad + \sinh \alpha (q_\phi \cos \beta + i q_\mathrm{m} \sin \beta \sin \gamma ) \nonumber \\&\qquad \qquad + \dfrac{1}{4} q_\mathrm{v} (k+A_0) (1 + 3 \cosh \alpha ) \bigg ] p(w), \nonumber \\&{\tilde{\phi }}(w) = \bigg [ \sinh ^2 \dfrac{\alpha }{2} \sin ^2\beta ( q_\phi \cos 2\gamma - i q_\mathrm{v} (k+A_0) \sin 2\gamma ) \nonumber \\&\qquad \qquad + \sinh \alpha (q_\mathrm{v} (k+A_0) \cos \beta +q_\mathrm{m} \sin \beta \cos \gamma ) \nonumber \\&\qquad \qquad + \sinh ^2 \dfrac{\alpha }{2} \left( \dfrac{1}{2} q_\phi \cos 2\beta + i q_\mathrm{m} \sin 2\beta \sin \gamma \right) \nonumber \\&\qquad \qquad + \dfrac{1}{4} q_\phi (1 + 3 \cosh \alpha ) \bigg ] p(w), \nonumber \\&\dfrac{{\tilde{\Delta }}(w)}{2} \nonumber \\&\quad = \bigg [\sinh ^2 \dfrac{\alpha }{2} (q_\mathrm{v} (k+A_0) \sin 2\beta \cos \gamma \nonumber \\&\qquad \qquad -i q_\phi \sin 2\beta \sin \gamma -q_\mathrm{m} \cos 2\beta ) \nonumber \\&\qquad \qquad + \sinh \alpha \sin \beta \left( q_\phi \cos \gamma -i q_\mathrm{v} (k+A_0) \sin \gamma \right) \nonumber \\&\qquad \qquad + \cosh ^2 \dfrac{\alpha }{2} q_\mathrm{m}\bigg ] p(w) \nonumber \\&\qquad \qquad + \sinh \alpha \sin \beta \left( (\phi _0 - \varepsilon ) \cos \gamma - i q_\mathrm{v} q_\mathrm{A} \sin \gamma \right) \nonumber \\&\qquad \qquad + \sinh ^2 \dfrac{\alpha }{2} \sin 2\beta (q_\mathrm{v} q_\mathrm{A} \cos \gamma - i (\phi _0 - \varepsilon ) \sin \gamma ) , \nonumber \\&{\tilde{k}} = + \sinh ^2 \dfrac{\alpha }{2} \nonumber \\&\quad \left[ \dfrac{1}{2} q_\mathrm{v} q_\mathrm{A} \cos 2\beta - \sin ^2\beta (q_\mathrm{v} q_\mathrm{A} \cos 2\gamma -i (\phi _0 - \varepsilon ) \sin 2\gamma )\right] \nonumber \\&\qquad \qquad + (\phi _0 - \varepsilon ) \sinh \alpha \cos \beta + \dfrac{1}{4} q_\mathrm{v} q_\mathrm{A} (1 + 3\cosh \alpha ) , \nonumber \\&{\tilde{\varepsilon }} = - \sinh ^2 \dfrac{\alpha }{2} \nonumber \\&\quad \bigg [ \dfrac{1}{2} (\phi _0 - \varepsilon ) \cos 2\beta + \sin ^2\beta ((\phi _0 - \varepsilon ) \cos 2\gamma \nonumber \\&\qquad \qquad -i q_\mathrm{v} q_\mathrm{A} \sin 2\gamma )\bigg ] \nonumber \\&\qquad \qquad - q_\mathrm{v} q_\mathrm{A} \sinh \alpha \cos \beta - \dfrac{1}{4} (\phi _0 - \varepsilon ) (1 + 3\cosh \alpha ).\nonumber \\ \end{aligned}$$
(46)

To obtain the B-case, we can use the rotation \(U_B (\alpha ^B, \beta ^B,\gamma ^B)\) with

$$\begin{aligned} \cosh \dfrac{\alpha ^B}{2}= & {} \dfrac{s_1^B \left[ (k+A_0)q_\mathrm{v} + \sqrt{-Q} \right] - i s_2^B (q_\mathrm{m}+q_\phi )}{2}, \nonumber \\ \cos \beta ^B= & {} i\dfrac{s_2^B \left[ (k+A_0)q_\mathrm{v} - \sqrt{-Q} \right] + i s_1^B (q_\mathrm{m}+q_\phi )}{2 \sinh \dfrac{\alpha ^B}{2}}, \nonumber \\ \cos \gamma ^B= & {} \dfrac{s_1^B \left[ (k+A_0)q_\mathrm{v} + \sqrt{-Q} \right] + i s_2^B (q_\mathrm{m}+q_\phi )}{2 \sin \beta ^B \sinh \dfrac{\alpha ^B}{2}}.\nonumber \\ \end{aligned}$$
(47)

For E-case, the rotation \(U_E\) is now determined by

$$\begin{aligned}&\cosh \dfrac{\alpha ^E}{2} \nonumber \\&\quad = \dfrac{i (k+A_0)q_\mathrm{v} (s_1^E+s_2^E) - \sqrt{Q}(s_1^E-s_2^E) + (q_\mathrm{m}+q_\phi )(s_1^E-s_2^E)}{2}, \nonumber \\&\cos \beta ^E \nonumber \\&\quad = i \dfrac{i (k+A_0)q_\mathrm{v} (s_1^E-s_2^E) - \sqrt{Q}(s_1^E+s_2^E) - (q_\mathrm{m}+q_\phi )(s_1^E+s_2^E)}{2 \sinh \dfrac{\alpha ^E}{2}}, \nonumber \\&\cos \gamma ^E \nonumber \\&\quad = \dfrac{i (k+A_0)q_\mathrm{v} (s_1^E+s_2^E) - \sqrt{Q}(s_1^E-s_2^E) - (q_\mathrm{m}+q_\phi )(s_1^E-s_2^E)}{2 \sin \beta ^E \sinh \dfrac{\alpha ^E}{2}}.\nonumber \\ \end{aligned}$$
(48)

Here, the factors s are given byFootnote 5

$$\begin{aligned}&(s_{1,2}^{B})^2 = \dfrac{ \sqrt{\pm 1} }{ \sqrt{\mp 1} } \left[ 2 (q_\mathrm{m}+q_\phi ) \sqrt{Q} \right] ^{-1} \times \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \nonumber \\&\dfrac{ \sqrt{q_\mathrm{v} \left[ (k+A_0) q_\mathrm{v} \mp \sqrt{-Q}\right] \left[ (\varepsilon -\phi _0) (k+A_0) + q_\mathrm{A} (q_\mathrm{m}+q_\phi )\right] + (\varepsilon -\phi _0) q_\mathrm{m} (q_\mathrm{m} + q_\phi )} }{ \sqrt{q_\mathrm{v} \left[ (k+A_0) q_\mathrm{v} \pm \sqrt{-Q}\right] \left[ (\varepsilon -\phi _0) (k+A_0) + q_\mathrm{A} (q_\mathrm{m}+q_\phi )\right] + (\varepsilon -\phi _0) q_\mathrm{m} (q_\mathrm{m} + q_\phi )} },\quad \nonumber \\&(s_{1,2}^{E})^2 = \dfrac{ \sqrt{\pm 1} }{ \sqrt{\mp 1} } \left[ 4 (q_\mathrm{m}+q_\phi ) \sqrt{Q} \right] ^{-1} \times \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \nonumber \\&\dfrac{ \sqrt{q_\mathrm{v} \left[ (k+A_0) q_\mathrm{v} \mp i \sqrt{Q} \right] \left[ (\varepsilon -\phi _0) (k+A_0) + q_\mathrm{A} (q_\mathrm{m} + q_\phi )\right] + (\varepsilon -\phi _0) q_\mathrm{m} (q_\mathrm{m} + q_\phi )} }{ \sqrt{q_\mathrm{v} \left[ (k+A_0) q_\mathrm{v} \pm i \sqrt{Q} \right] \left[ (\varepsilon -\phi _0) (k+A_0) + q_\mathrm{A} (q_\mathrm{m} + q_\phi )\right] + (\varepsilon -\phi _0) q_\mathrm{m} (q_\mathrm{m} + q_\phi )} }.\quad \end{aligned}$$
(49)

Appendix B. The formulae of the probability density and the probability current density

For both the B- and E-cases, the expressions of the probability density \(\rho \) and the probability current density \(\mathbf {J}\) are given by [54]

$$\begin{aligned}&\rho ^{B,E} (x) = \Psi ^\dagger (x,y) \Psi (x,y) \nonumber \\&\quad = \dfrac{1}{v(x)} G_{B,E}^\dagger (w(x)) U_{B,E}^\dagger U_{B,E} G_{B,E}(w(x)),\nonumber \\&J_x^{B,E} = v(x) \Psi ^\dagger (x,y) \sigma _x \Psi (x,y) \nonumber \\&\quad = G_{B,E}^\dagger (w(x)) U_{B,E}^\dagger \sigma _x U_{B,E} G_{B,E}(w(x)),\nonumber \\&J_y^{B,E} = v(x) \Psi ^\dagger (x,y) \sigma _y \Psi (x,y) \nonumber \\&\quad = G_{B,E}^\dagger (w(x)) U_{B,E}^\dagger \sigma _y U_{B,E} G_{B,E}(w(x)). \end{aligned}$$
(50)

Appendix C. Variable-changing for multi-barrier system

The auxiliary variable is

(51)

We can rewrite the above quantities to show that they satisfy the ansatz (9) with

$$\begin{aligned}&q_\mathrm{v} = -r_\mathrm{v}< 0, \quad q_\mathrm{A} = -r_\mathrm{A}, \quad q_\mathrm{m} = -r_\mathrm{m} \le 0, \quad q_\phi = - r_\phi , \nonumber \\&p(w) = - \left[ 1 + h \sum _{n=0}^{N-1} \Pi \left( \dfrac{w - n L}{A} -\dfrac{1}{2} \right) \right] < 0. \end{aligned}$$
(52)

Appendix D. The increase in the number of transparent peaks when N increases

To explain the increase in the number of transparent peaks when the number N of barriers increases, we re-examine the transfer matrix X. Because, in principle, all \(2\times 2\) matrices can be uniquely decomposed into the Pauli matrices \(\sigma _j\) (\(j=1,2,3\)) and the identity matrix \({\mathbb {I}}\), we have

$$\begin{aligned}&X = [M_3 M_2]^N = [A_0 {\mathbb {I}} + A_1 \sigma _1 + A_2 \sigma _2 + A_3 \sigma _3]^N\nonumber \\&= \left[ u_0 + \cos (u) + i \sin (u) \left( \dfrac{u_1}{u} \sigma _1 + \dfrac{u_2}{u} \sigma _2 + \dfrac{u_3}{u} \sigma _3 \right) \right] ^N\nonumber \\ \end{aligned}$$
(53)

where we introduced the vector \(\mathbf {u}=(u_1,u_2,u_3)\) whose components satisfy the following relations

$$\begin{aligned} i u_j \sin (u) /u = A_j, \qquad j=1,2,3. \end{aligned}$$
(54)

Here \(u=\sqrt{u_1^2+u_2^2+u_3^2}\) is the length of \(\mathbf {u}\) and in this situation \(\cos (u) = A_0 - u_0\). Then, according to Euler’s identity for matrix, X can be rewritten

$$\begin{aligned} X= & {} \left[ u_0 + e^{i \mathbf {u} \cdot \mathbf {\sigma }} \right] ^N \nonumber \\= & {} \sum _{n=0}^{N} u_0^{N-n} e^{i n \mathbf {u} \cdot \mathbf {\sigma }} \nonumber \\= & {} \sum _{n=0}^{N} u_0^{N-n} \left[ \cos (n u) + i \sin (n u) \left( \dfrac{u_1}{u} \sigma _1 + \dfrac{u_2}{u} \sigma _2 + \dfrac{u_3}{u} \sigma _3 \right) \right] \nonumber \\= & {} X_0(N) + i \left( \dfrac{u_1}{u} \sigma _1 + \dfrac{u_2}{u} \sigma _2 + \dfrac{u_3}{u} \sigma _3 \right) X_\sigma (N) \end{aligned}$$
(55)

where

$$\begin{aligned}&X_0(N) = \sum _{n=0}^{N} u_0^{N-n} \cos (n u) \nonumber \\&\quad = \frac{\cos (N u) - u_0\cos [(N+1) u] - u_0^{N+1} \cos (u) +u_0^{N+2}}{\left( e^{i u} - u_0\right) \left( e^{-i u} - u_0\right) }, \nonumber \\&X_\sigma (N) = \sum _{n=0}^{N} u_0^{N-n} \sin (n u) \nonumber \\&\quad = \frac{\sin (N u) - u_0 \sin [(N+1)u] + u_0^{N+1} \sin (u)}{\left( e^{i u} - u_0\right) \left( e^{-i u} - u_0\right) }. \end{aligned}$$
(56)

Or in matrix form, we have

$$\begin{aligned} X = \begin{pmatrix} X_0 (N) + i X_\sigma (N) u_3/u &{} i X_\sigma (N) u_1/u + X_\sigma (N) u_2/u \\ i X_\sigma (N) u_1/u - X_\sigma (N) u_2/u &{} X_0 (N) - i X_\sigma (N) u_3/u \end{pmatrix}.\nonumber \\ \end{aligned}$$
(57)

Now, we can rewrite transmission probabilities in terms of N for both cases

$$\begin{aligned} T_B(N)= & {} |t_B|^2\nonumber \\= & {} \left| X_0 (N) - X_\sigma (N) \tan \theta _1^B \dfrac{u_3}{u} + i \dfrac{X_\sigma (N)}{\cos \theta _1^B} \dfrac{u_2}{u} \right| ^{-2}, \nonumber \\ T_E(N)= & {} |t_E|^2 \nonumber \\= & {} \left| X_0 (N) - X_\sigma (N) \tan \theta _1^E \dfrac{u_3}{u} - i \dfrac{X_\sigma (N)}{\cos \theta _1^E} \dfrac{u_1}{u} \right| ^{-2}.\nonumber \\ \end{aligned}$$
(58)

We can see that the number N of barriers plays the role of a factor in the phase of the trigonometric functions, making the transmission probability T oscillates more rapidly with respect to the incident angle \(\alpha \) (keep in mind that all \(u,u_1,u_2,u_3,\theta _1^B,\theta _1^E\) depend on \(\alpha \)). The obvious consequence is that when N is doubled, the number of transparent peaks is roughly doubled as well, as observed in the Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, AL., Le, DN. Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems. Eur. Phys. J. B 94, 165 (2021). https://doi.org/10.1140/epjb/s10051-021-00176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00176-x

Navigation