Skip to main content

Advertisement

Log in

The causes and consequences of paediatric kidney disease on adult nephrology care

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Adult nephrologists often look after patients who have been diagnosed with kidney disease in childhood. This does present unique challenges to the adult nephrologist, who may be unfamiliar with the underlying cause of kidney disease as well as the complications of chronic kidney disease (CKD) that may have accumulated during childhood. This review discusses common causes of childhood CKD, in particular congenital anomalies of the kidney and urinary tract (CAKUT), autosomal dominant tubulointerstitial kidney disease (ADTKD), polycystic kidney disease, hereditary stone disease, nephrotic syndrome and atypical haemolytic uraemic syndrome. The long-term consequences of childhood CKD, such as the cardiovascular consequences, cognition and education as well as bone health, nutrition and growth are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weaver DJ, Somers MJG, Martz K, Mitsnefes MM (2017) Clinical outcomes and survival in pediatric patients initiating chronic dialysis: a report of the NAPRTCS registry. Pediatr Nephrol 32:2319–2330

  2. Ardissino G, Dacco V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E et al (2003) Epidemiology of chronic renal failure in children: data from the ItalKid Project. Pediatrics 111:e382–e387

    Article  PubMed  Google Scholar 

  3. Orr NI, McDonald SP, McTaggart S, Henning P, Craig JC (2009) Frequency, etiology and treatment of childhood end-stage kidney disease in Australia and New Zealand. Pediatr Nephrol 24:1719–1726

    Article  PubMed  Google Scholar 

  4. Hamilton AJ, Braddon F, Casula A, Lewis M, Mallett T, Marks SD et al (2017) UK Renal Registry 19th Annual Report: Chapter 4 Demography of the UK paediatric renal replacement therapy population in 2015. Nephron 137(Suppl 1):103–116

    Article  PubMed  Google Scholar 

  5. Hattori M, Sako M, Kaneko T, Ashida A, Matsunaga A, Igarashi T et al (2015) End-stage renal disease in Japanese children: a nationwide survey during 2006-2011. Clin Exp Nephrol 19:933–938

    Article  PubMed  Google Scholar 

  6. Bonilla-Felix M, Parra C, Dajani T, Ferris M, Swinford RD, Portman RJ et al (1999) Changing patterns in the histopathology of idiopathic nephrotic syndrome in children. Kidney Int 55:1885–1890

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava T, Simon SD, Alon US (1999) High incidence of focal segmental glomerulosclerosis in nephrotic syndrome of childhood. Pediatr Nephrol 13:13–18

    Article  CAS  PubMed  Google Scholar 

  8. Filler G, Young E, Geier P, Carpenter B, Drukker A, Feber J (2003) Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis 42:1107–1113

    Article  PubMed  Google Scholar 

  9. Plumb L, Casula A, Pyart R, Evans KM, Inward C, Medcalf J et al (2020) The 21st UK Renal Registry Annual Report: a summary of analyses of paediatric data in 2017. Nephron 144:67–71

    Article  PubMed  Google Scholar 

  10. van der Heijden BJ, van Dijk PC, Verrier-Jones K, Jager KJ, Briggs JD (2004) Renal replacement therapy in children: data from 12 registries in Europe. Pediatr Nephrol 19:213–221

    Article  PubMed  Google Scholar 

  11. McDonald SP, Craig JC, Australian and New Zealand Paediatric Nephrology Association (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662

    Article  CAS  PubMed  Google Scholar 

  12. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ et al (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    Article  PubMed  Google Scholar 

  13. Kramer A, Stel VS, Tizard J, Verrina E, Ronnholm K, Palsson R et al (2009) Characteristics and survival of young adults who started renal replacement therapy during childhood. Nephrol Dial Transplant 24:926–933

    Article  PubMed  Google Scholar 

  14. Loane M, Dolk H, Kelly A, Teljeur C, Greenlees R, Densem J et al (2011) Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol 91(Suppl 1):S31–S43

    Article  CAS  PubMed  Google Scholar 

  15. Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG et al (2013) Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol 8:67–74

    Article  PubMed  Google Scholar 

  16. Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF et al (2015) Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol 10:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood D (2014) Adolescent urology: developing lifelong care for congenital anomalies. Nat Rev Urol 11:289–296

    Article  PubMed  Google Scholar 

  18. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G et al (2009) Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 76:528–533

    Article  PubMed  Google Scholar 

  19. van der Ven AT, Vivante A, Hildebrandt F (2018) Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:36–50

    Article  PubMed  Google Scholar 

  20. Ichikawa I, Kuwayama F, Pope JC, Stephens FD, Miyazaki Y (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898

    Article  PubMed  Google Scholar 

  21. Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG (2018) Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest 128:4–15

    Article  PubMed  PubMed Central  Google Scholar 

  22. Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H et al (2019) Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 380:142–151

    Article  CAS  PubMed  Google Scholar 

  23. van der Ven AT, Connaughton DM, Ityel H, Mann N, Nakayama M, Chen J et al (2018) Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:2348–2361

    Article  PubMed  PubMed Central  Google Scholar 

  24. Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P et al (2019) The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 51:117–127

    Article  CAS  PubMed  Google Scholar 

  25. Barker DJ (2006) Adult consequences of fetal growth restriction. Clin Obstet Gynecol 49:270–283

    Article  PubMed  Google Scholar 

  26. Hinchliffe SA, Lynch MR, Sargent PH, Howard CV, Van Velzen D (1992) The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol 99:296–301

    Article  CAS  PubMed  Google Scholar 

  27. Faure A, Bouty A, Caruana G, Williams L, Burgess T, Wong MN et al (2016) DNA copy number variants: a potentially useful predictor of early onset renal failure in boys with posterior urethral valves. J Pediatr Urol 12(227):e1–e7

    Google Scholar 

  28. Yulia A, Winyard P (2018) Management of antenatally detected kidney malformations. Early Hum Dev 126:38–46

    Article  CAS  PubMed  Google Scholar 

  29. Lee KH, Gee HY, Shin JI (2017) Genetics of vesicoureteral reflux and congenital anomalies of the kidney and urinary tract. Investig Clin Urol 58(Suppl 1):S4–S13

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hodges SJ, Patel B, McLorie G, Atala A (2009) Posterior urethral valves. ScientificWorldJournal 9:1119–1126

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parkhouse HF, Barratt TM, Dillon MJ, Duffy PG, Fay J, Ransley PG et al (1988) Long-term outcome of boys with posterior urethral valves. Br J Urol 62:59–62

    Article  CAS  PubMed  Google Scholar 

  32. Brownlee E, Wragg R, Robb A, Chandran H, Knight M, McCarthy L et al (2019) Current epidemiology and antenatal presentation of posterior urethral valves: outcome of BAPS CASS National Audit. J Pediatr Surg 54:318–321

    Article  PubMed  Google Scholar 

  33. Kovell RC, Skokan AJ, Wood DN (2018) Transitional urology. Urol Clin North Am 45:601–610

    Article  PubMed  Google Scholar 

  34. Heikkila J, Holmberg C, Kyllonen L, Rintala R, Taskinen S (2011) Long-term risk of end stage renal disease in patients with posterior urethral valves. J Urol 186:2392–2396

    Article  PubMed  Google Scholar 

  35. Taskinen S, Heikkila J, Santtila P, Rintala R (2012) Posterior urethral valves and adult sexual function. BJU Int 110:E392–E396

    Article  PubMed  Google Scholar 

  36. Holmdahl G, Sillen U (2005) Boys with posterior urethral valves: outcome concerning renal function, bladder function and paternity at ages 31 to 44 years. J Urol 174:1031–1034 discussion 1034

    Article  PubMed  Google Scholar 

  37. Wong J, Punwani V, Lai C, Chia J, Hutson JM (2016) Why do undescended testes and posterior urethral valve occur together? Pediatr Surg Int 32:509–514

    Article  PubMed  Google Scholar 

  38. Virtanen HE, Bjerknes R, Cortes D, Jorgensen N, Rajpert-De Meyts E, Thorsson AV et al (2007) Cryptorchidism: classification, prevalence and long-term consequences. Acta Paediatr 96:611–616

    Article  PubMed  Google Scholar 

  39. Williams G, Fletcher JT, Alexander SI, Craig JC (2008) Vesicoureteral reflux. J Am Soc Nephrol 19:847–862

    Article  CAS  PubMed  Google Scholar 

  40. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777

    Article  CAS  PubMed  Google Scholar 

  41. Corbani V, Ghiggeri GM, Sanna-Cherchi S (2011) Congenital solitary functioning kidneys: which ones warrant follow-up into adult life? Nephrol Dial Transplant 26:1458–1460

    Article  PubMed  Google Scholar 

  42. Westland R, Kurvers RA, van Wijk JA, Schreuder MF (2013) Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics 131:e478–e485

    Article  PubMed  Google Scholar 

  43. Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JA (2014) Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol 9:978–986

    Article  PubMed  Google Scholar 

  44. Biers SM, Venn SN, Greenwell TJ (2012) The past, present and future of augmentation cystoplasty. BJU Int 109:1280–1293

    Article  PubMed  Google Scholar 

  45. Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F (2014) Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 29:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  46. Winyard P, Chitty LS (2008) Dysplastic kidneys. Semin Fetal Neonatal Med 13:142–151

    Article  PubMed  Google Scholar 

  47. Luke PP, Herz DB, Bellinger MF, Chakrabarti P, Vivas CA, Scantlebury VP et al (2003) Long-term results of pediatric renal transplantation into a dysfunctional lower urinary tract. Transplantation 76:1578–1582

    Article  PubMed  Google Scholar 

  48. McKay AM, Kim S, Kennedy SE (2019) Long-term outcome of kidney transplantation in patients with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 34:2409–2415

    Article  PubMed  Google Scholar 

  49. Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG (2011) HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26:897–903

    Article  PubMed  PubMed Central  Google Scholar 

  50. Madariaga L, Moriniere V, Jeanpierre C, Bouvier R, Loget P, Martinovic J et al (2013) Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin J Am Soc Nephrol 8:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC et al (2014) Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 85:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  53. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D et al (2012) Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 91:987–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bekheirnia MR, Bekheirnia N, Bainbridge MN, Gu S, Coban Akdemir ZH, Gambin T et al (2017) Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet Med 19:412–420

    Article  CAS  PubMed  Google Scholar 

  55. Eckardt KU, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K et al (2015) Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management--a KDIGO consensus report. Kidney Int 88:676–683

    Article  CAS  PubMed  Google Scholar 

  56. Sikri KL, Foster CL, MacHugh N, Marshall RD (1981) Localization of Tamm-Horsfall glycoprotein in the human kidney using immuno-fluorescence and immuno-electron microscopical techniques. J Anat 132:597–605

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bollee G, Dahan K, Flamant M, Moriniere V, Pawtowski A, Heidet L et al (2011) Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol 6:2429–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kirby A, Gnirke A, Jaffe DB, Baresova V, Pochet N, Blumenstiel B et al (2013) Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet 45:299–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bleyer AJ, Kmoch S, Antignac C, Robins V, Kidd K, Kelsoe JR et al (2014) Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin J Am Soc Nephrol 9:527–535

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 8:2001–2008

    Article  CAS  PubMed  Google Scholar 

  61. Adalat S, Hayes WN, Bryant WA, Booth J, Woolf AS, Kleta R et al (2019) HNF1B mutations are associated with a Gitelman-like tubulopathy that develops during childhood. Kidney Int Rep 4:1304–1311

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S et al (2004) Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med 140:510–517

    Article  CAS  PubMed  Google Scholar 

  63. Faguer S, Decramer S, Chassaing N, Bellanne-Chantelot C, Calvas P, Beaufils S et al (2011) Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int 80:768–776

    Article  CAS  PubMed  Google Scholar 

  64. Oram RA, Edghill EL, Blackman J, Taylor MJ, Kay T, Flanagan SE et al (2010) Mutations in the hepatocyte nuclear factor-1beta (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am J Obstet Gynecol 203(364):e1–e5

    Google Scholar 

  65. Bolar NA, Golzio C, Zivna M, Hayot G, Van Hemelrijk C, Schepers D et al (2016) Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 99:174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Devuyst O, Olinger E, Weber S, Eckardt KU, Kmoch S, Rampoldi L et al (2019) Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers 5:60

    Article  PubMed  Google Scholar 

  67. Zerres K, Hansmann M, Mallmann R, Gembruch U (1988) Autosomal recessive polycystic kidney disease. Problems of prenatal diagnosis. Prenat Diagn 8:215–229

    Article  CAS  PubMed  Google Scholar 

  68. Sharp AM, Messiaen LM, Page G, Antignac C, Gubler MC, Onuchic LF et al (2005) Comprehensive genomic analysis of PKHD1 mutations in ARPKD cohorts. J Med Genet 42:336–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dell KM (2011) The spectrum of polycystic kidney disease in children. Adv Chronic Kidney Dis 18:339–347

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sweeney WE Jr, Avner ED (2011) Diagnosis and management of childhood polycystic kidney disease. Pediatr Nephrol 26:675–692

    Article  PubMed  Google Scholar 

  71. Guay-Woodford LM, Desmond RA (2003) Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111:1072–1080

    Article  PubMed  Google Scholar 

  72. Adeva M, El-Youssef M, Rossetti S, Kamath PS, Kubly V, Consugar MB et al (2006) Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore) 85:1–21

    Article  Google Scholar 

  73. Telega G, Cronin D, Avner ED (2013) New approaches to the autosomal recessive polycystic kidney disease patient with dual kidney-liver complications. Pediatr Transplant 17:328–335

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wehrman A, Kriegermeier A, Wen J (2017) Diagnosis and management of hepatobiliary complications in autosomal recessive polycystic kidney disease. Front Pediatr 5:124

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gunay-Aygun M, Turkbey BI, Bryant J, Daryanani KT, Gerstein MT, Piwnica-Worms K et al (2011) Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol Genet Metab 104:677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Buscher R, Buscher AK, Weber S, Mohr J, Hegen B, Vester U et al (2014) Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non-kidney-related phenotypes. Pediatr Nephrol 29:1915–1925

    Article  PubMed  Google Scholar 

  77. Bergmann C, Senderek J, Windelen E, Kupper F, Middeldorf I, Schneider F et al (2005) Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int 67:829–848

    Article  CAS  PubMed  Google Scholar 

  78. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K et al (2016) Mutations in GANAB, encoding the glucosidase IIalpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cornec-Le Gall E, Audrezet MP, Chen JM, Hourmant M, Morin MP, Perrichot R et al (2013) Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol 24:1006–1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cole BR, Conley SB, Stapleton FB (1987) Polycystic kidney disease in the first year of life. J Pediatr 111:693–699

    Article  CAS  PubMed  Google Scholar 

  81. McConnachie DJ, Stow JL, Mallett AJ (2020) Ciliopathies and the kidney: a review. Am J Kidney Dis 77:410–419

    Article  PubMed  CAS  Google Scholar 

  82. Chebib FT, Torres VE (2018) Recent advances in the management of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 13:1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luo F, Tao YH (2018) Nephronophthisis: a review of genotype-phenotype correlation. Nephrology (Carlton) 23:904–911

    Article  Google Scholar 

  84. Rule AD, Krambeck AE, Lieske JC (2011) Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol 6:2069–2075

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hoppe B, Beck BB, Milliner DS (2009) The primary hyperoxalurias. Kidney Int 75:1264–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS et al (2013) Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol 28:1923–1942

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hoppe B, Langman CB (2003) A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol 18:986–991

    Article  PubMed  Google Scholar 

  88. Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J et al (2010) Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant 25:1909–1915

    Article  CAS  PubMed  Google Scholar 

  89. Cochran B, Kovacikova T, Hodanova K, Zivna M, Hnizda A, Niehaus AG et al (2018) Chronic tubulointerstitial kidney disease in untreated adenine phosphoribosyl transferase (APRT) deficiency: a case report. Clin Nephrol 90:296–301

    Article  CAS  PubMed  Google Scholar 

  90. Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR, Kim SC et al (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227–2235

    Article  CAS  PubMed  Google Scholar 

  91. Lambert EH, Asplin JR, Herrell SD, Miller NL (2010) Analysis of 24-hour urine parameters as it relates to age of onset of cystine stone formation. J Endourol 24:1179–1182

    Article  PubMed  Google Scholar 

  92. Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493

    CAS  PubMed  Google Scholar 

  93. Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348:2543–2556

    Article  CAS  PubMed  Google Scholar 

  94. Hertz JM, Thomassen M, Storey H, Flinter F (2015) Clinical utility gene card for: Alport syndrome - update 2014. Eur J Hum Genet 23(9)

  95. Savige J (2014) Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol 592:4013–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tonshoff B et al (2012) Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 81:494–501

    Article  CAS  PubMed  Google Scholar 

  97. Kashtan CE, Ding J, Gregory M, Gross O, Heidet L, Knebelmann B et al (2013) Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 28:5–11

    Article  PubMed  Google Scholar 

  98. Matthaiou A, Poulli T, Deltas C (2020) Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 13:1025–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rheault MN, Kren SM, Hartich LA, Wall M, Thomas W, Mesa HA et al (2010) X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome. Nephrol Dial Transplant 25:764–769

    Article  CAS  PubMed  Google Scholar 

  100. Savige J, Ariani F, Mari F, Bruttini M, Renieri A, Gross O et al (2019) Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatr Nephrol 34:1175–1189

    Article  PubMed  Google Scholar 

  101. Kashtan CE, Ding J, Garosi G, Heidet L, Massella L, Nakanishi K et al (2018) Alport syndrome: a unified classification of genetic disorders of collagen IV alpha345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int 93:1045–1051

    Article  PubMed  Google Scholar 

  102. Savige J, Colville D, Rheault M, Gear S, Lennon R, Lagas S et al (2016) Alport syndrome in women and girls. Clin J Am Soc Nephrol 11:1713–1720

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kashtan CE (2009) Familial hematuria. Pediatr Nephrol 24:1951–1958

    Article  PubMed  PubMed Central  Google Scholar 

  104. Savige J, Gregory M, Gross O, Kashtan C, Ding J, Flinter F (2013) Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 24:364–375

    Article  CAS  PubMed  Google Scholar 

  105. Hood JC, Dowling J, Bertram JF, Young RJ, Huxtable C, Robinson W et al (2002) Correlation of histopathological features and renal impairment in autosomal dominant Alport syndrome in Bull Terriers. Nephrol Dial Transplant 17:1897–1908

    Article  CAS  PubMed  Google Scholar 

  106. Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T et al (2019) A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 23:158–168

    Article  PubMed  Google Scholar 

  107. Mencarelli MA, Heidet L, Storey H, van Geel M, Knebelmann B, Fallerini C et al (2015) Evidence of digenic inheritance in Alport syndrome. J Med Genet 52:163–174

    Article  CAS  PubMed  Google Scholar 

  108. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362:629–639

    Article  PubMed  Google Scholar 

  109. Vivarelli M, Massella L, Ruggiero B, Emma F (2017) Minimal change disease. Clin J Am Soc Nephrol 12:332–345

    Article  CAS  PubMed  Google Scholar 

  110. Fakhouri F, Bocquet N, Taupin P, Presne C, Gagnadoux MF, Landais P et al (2003) Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis 41:550–557

    Article  PubMed  Google Scholar 

  111. Ding WY, Koziell A, McCarthy HJ, Bierzynska A, Bhagavatula MK, Dudley JA et al (2014) Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol 25:1342–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K et al (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119:e907–e919

    Article  PubMed  Google Scholar 

  113. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S et al (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26:1279–1289

    Article  CAS  PubMed  Google Scholar 

  114. Yao T, Udwan K, John R, Rana A, Haghighi A, Xu L et al (2019) Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin J Am Soc Nephrol 14:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY et al (2017) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91:937–947

    Article  PubMed  Google Scholar 

  116. Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS, Bodria M, Ozaltin F, Emma F et al (2017) Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol 28:3055–3065

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tullus K, Webb H, Bagga A (2018) Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health 2:880–890

    Article  PubMed  Google Scholar 

  118. Kavanagh D, Goodship TH, Richards A (2013) Atypical hemolytic uremic syndrome. Semin Nephrol 33:508–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brocklebank V, Kumar G, Howie AJ, Chandar J, Milford DV, Craze J et al (2020) Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney Int 97:1260–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM et al (2014) Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol 25:55–64

    Article  CAS  PubMed  Google Scholar 

  121. Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C (2017) Haemolytic uraemic syndrome. Lancet 390:681–696

    Article  PubMed  Google Scholar 

  122. Loirat C, Fremeaux-Bacchi V (2011) Atypical hemolytic uremic syndrome. Orphanet J Rare Dis 6:60

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cody EM, Dixon BP (2019) Hemolytic uremic syndrome. Pediatr Clin North Am 66:235–246

    Article  PubMed  Google Scholar 

  124. Fujisawa M, Kato H, Yoshida Y, Usui T, Takata M, Fujimoto M et al (2018) Clinical characteristics and genetic backgrounds of Japanese patients with atypical hemolytic uremic syndrome. Clin Exp Nephrol 22:1088–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U et al (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Article  PubMed  Google Scholar 

  126. Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A et al (2017) Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol 12:19–28

    Article  PubMed  Google Scholar 

  127. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL et al (2008) Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension 52:631–637

    Article  CAS  PubMed  Google Scholar 

  128. ESCAPE Trial Group; Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A et al (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361:1639–1650

  129. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J et al (2010) Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol 21:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee JM, Kronbichler A, Shin JI, Oh J (2020) Review on long-term non-renal complications of childhood nephrotic syndrome. Acta Paediatr 109:460–470

    Article  PubMed  Google Scholar 

  131. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Groothoff JW, Grootenhuis M, Dommerholt A, Gruppen MP, Offringa M, Heymans HS (2002) Impaired cognition and schooling in adults with end stage renal disease since childhood. Arch Dis Child 87:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Icard P, Hooper SR, Gipson DS, Ferris ME (2010) Cognitive improvement in children with CKD after transplant. Pediatr Transplant 14:887–890

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chen K, Didsbury M, van Zwieten A, Howell M, Kim S, Tong A et al (2018) Neurocognitive and educational outcomes in children and adolescents with CKD: a systematic review and meta-analysis. Clin J Am Soc Nephrol 13:387–397

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hooper SR, Gerson AC, Butler RW, Gipson DS, Mendley SR, Lande MB et al (2011) Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin J Am Soc Nephrol 6:1824–1830

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mahesh S, Kaskel F (2008) Growth hormone axis in chronic kidney disease. Pediatr Nephrol 23:41–48

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rashid R, Neill E, Maxwell H, Ahmed SF (2007) Growth and body composition in children with chronic kidney disease. Br J Nutr 97:232–238

    Article  CAS  PubMed  Google Scholar 

  138. Kogon AJ, Harshman LA (2019) Chronic kidney disease: treatment of comorbidities I: (nutrition, growth, neurocognitive function, and mineral bone disease). Curr Treat Options Pediatr 5:78–92

    Article  PubMed  PubMed Central  Google Scholar 

  139. Santos F, Carbajo-Perez E, Rodriguez J, Fernandez-Fuente M, Molinos I, Amil B et al (2005) Alterations of the growth plate in chronic renal failure. Pediatr Nephrol 20:330–334

    Article  PubMed  Google Scholar 

  140. Ardissino G, Testa S, Dacco V, Paglialonga F, Vigano S, Felice-Civitillo C et al (2012) Puberty is associated with increased deterioration of renal function in patients with CKD: data from the ItalKid Project. Arch Dis Child 97:885–888

    Article  PubMed  Google Scholar 

  141. Watson AR, Harden P, Ferris M, Kerr PG, Mahan J, Ramzy MF (2011) Transition from pediatric to adult renal services: a consensus statement by the International Society of Nephrology (ISN) and the International Pediatric Nephrology Association (IPNA). Pediatr Nephrol 26:1753–1757

    Article  PubMed  Google Scholar 

  142. Foster BJ, Dahhou M, Zhang X, Platt RW, Samuel SM, Hanley JA (2011) Association between age and graft failure rates in young kidney transplant recipients. Transplantation 92:1237–1243

    Article  PubMed  Google Scholar 

  143. Watson AR (2000) Non-compliance and transfer from paediatric to adult transplant unit. Pediatr Nephrol 14:469–472

    Article  CAS  PubMed  Google Scholar 

  144. Harden PN, Walsh G, Bandler N, Bradley S, Lonsdale D, Taylor J et al (2012) Bridging the gap: an integrated paediatric to adult clinical service for young adults with kidney failure. BMJ 344:e3718

    Article  CAS  PubMed  Google Scholar 

  145. Dobbels F, Ruppar T, De Geest S, Decorte A, Van Damme-Lombaerts R, Fine RN (2010) Adherence to the immunosuppressive regimen in pediatric kidney transplant recipients: a systematic review. Pediatr Transplant 14:603–613

    Article  CAS  PubMed  Google Scholar 

  146. Harden PN, Sherston SN (2013) Optimal management of young adult transplant recipients: the role of integrated multidisciplinary care and peer support. Ann Saudi Med 33:489–491

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth J. Pepper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepper, R.J., Trompeter, R.S. The causes and consequences of paediatric kidney disease on adult nephrology care. Pediatr Nephrol 37, 1245–1261 (2022). https://doi.org/10.1007/s00467-021-05182-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05182-w

Keywords

Navigation