Skip to main content

Advertisement

Log in

Natural Feedstock in Catalysis: A Sustainable Route Towards Organic Transformations

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Catalysts are the jewel in the crown of the chemical industry, accelerating reaction kinetics and augmenting the efficiency of desired reaction paths. Natural feedstock is a renewable resource capable of providing valuable functional products; in addition, it confers an opportunity to create catalysts. As an alternative to stoichiometric reagents, and as a part of a sustainable approach, the implications of using natural feedstocks as a source of new catalysts has attracted considerable interest. Natural feedstock-derived catalysts can promote chemical transformations more efficiently. Recent reports have highlighted the significant role of these biogenic, cost-effective, innocuous, biodegradable materials as catalysts in many biologically and pharmacologically important protocols. This review outlines the decisive organic transformations for which feedstock-derived catalysts have been employed effectively and successfully, along with their economic and environmental benefits over traditional catalytic systems.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Fig. 3
Fig. 4
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Fig. 5
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56

Similar content being viewed by others

References

  1. Bennett J, Wilson K, Lee AF (2016) J Mater Chem A 4:3617–3637

    Article  CAS  Google Scholar 

  2. Gao B, Yu Y, Zhou H, Lu J (2012) Environ Toxic Chem 31:1231–1238

    Article  CAS  Google Scholar 

  3. Khaiwal R, Laszlo B, Rene VG (2004) Sci Total Environ 318:1–3

    Article  CAS  Google Scholar 

  4. Clare LSW, Fathi Z (2012) Sci Total Environ 407:2493–2500

    Google Scholar 

  5. Hagen J (2015) Industrial Catalysis: A Practical Approach. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Joshi SS, Bhatnagar A, Ranade VV (2016) In: Joshi S (ed) Industrial Catalytic Processes for Fine and Specialty Chemicals. Elsevier, Amsterdam

  7. Rajkumari K, Das D, Pathak G, Rokhum L (2019) New J Chem 43:2134–2140

    Article  CAS  Google Scholar 

  8. McClellan JE, Dorn H (2006) Science and Technology in World History: An Introduction, 3rd edn. JHU, Maryland

    Google Scholar 

  9. Degryse C (2005) L'économie en 100 et quelques mots d'actualité. 3rd edn. De Boeck, Paris

  10. Mubofu EB, Mgaya JE (2018) Top Curr Chem 376:1–15

    Article  CAS  Google Scholar 

  11. Tchibambelela B (2009) Global Hunger Trade: a strategy of positive rupture in Congo-Brazzaville. L’Harmattan, Paris

    Google Scholar 

  12. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Curr Opin Biotech 21:277–286

    Article  CAS  Google Scholar 

  13. Verser DW, Eggman TJ (2009) US Patent No. US 507562B2

  14. Hossain ABMS, Ibrahim NA, Aleissa MS (2016) Data Brief 8:286–294

    Article  Google Scholar 

  15. Maria RD, Diaz I, Rodriguez M, Saiz A (2013) Int J Chem React Eng 11:469–477

    Article  Google Scholar 

  16. Ukpai PA, Nnabuchi MN (2012) Adv Appl Sci Res 3:1864–1869

    CAS  Google Scholar 

  17. Kuhlborn J, Grob J, Opatz T (2019) Nat Prod Rep 37:380–424

    Article  Google Scholar 

  18. Zhan M, Wool RP, Xiao JQ (2011) Compos Part A Appl Sci Manuf 42:229–233

    Article  CAS  Google Scholar 

  19. Alcantara R, Amores J, Canoira L, Fidalgo E, Franco MJ, Navarro A (2000) Biomass Bioenerg 18:515–527

    Article  CAS  Google Scholar 

  20. Khan MA, Khan T, Ali H (2019) Mater Res 50:1–20

    CAS  Google Scholar 

  21. Hulle A, Kadole P, Katkar P (2015) Fibers 3:64–75

    Article  CAS  Google Scholar 

  22. Sinclair WB, Eny DM (1945) Bot Gaz 107:231–242

    Article  CAS  Google Scholar 

  23. Wu G et al (2018) Nature 554:311–316

    Article  CAS  Google Scholar 

  24. Garcia-Salas P et al (2013) Food Chem 141:869–878

    Article  CAS  Google Scholar 

  25. He D, Shan Y, Wu Y, Liu G, Chen B, Yao S (2011) Food Chem 127:880–885

    Article  CAS  Google Scholar 

  26. Kelebek H, Selli S (2011) J Sci Food Agric 91:1855–1862

    Article  CAS  Google Scholar 

  27. Wu GA, Terol J et al (2018) Nature 554:311

    Article  CAS  Google Scholar 

  28. Morton J (1987) In: Morton J (ed) Fruits of warm climates. Miami, FL

  29. https://www.thoughtco.com

  30. Economos C, Clay WD (1999) Food Nutr Agric 24:11–18

    Google Scholar 

  31. Abu-Dief AM, Mohamed IMA (2015) Beni-Suef Univ J Basic Appl Sci 4:119–133

    Google Scholar 

  32. Patil SS, Jadhav SD, Patil UP (2012) Arch Appl Sci Res 4:1074–1078

    CAS  Google Scholar 

  33. Vekariya RH, Patel KD, Patel HD (2016) Res Chem Intermed 42:7559–7579

    Article  CAS  Google Scholar 

  34. Petronijevic J et al (2017) Green Chem 19:707–715

    Article  CAS  Google Scholar 

  35. Bhat SI, Choudhury AR, Trivedi DR (2012) RSC Adv 2:10556–10563

    Article  CAS  Google Scholar 

  36. Hosseini-Sarvari M, Sharghi H, Etemad S (2007) Chin J Chem 25:1563–1567

    Article  CAS  Google Scholar 

  37. Deshmukh MB, Patil SS, Jadhav SD, Pawar PB (2012) Synth Commun 45:1177

    Article  CAS  Google Scholar 

  38. Keri RS, Patil MR, Patil SA, Budagumpi S (2015) Eur J Med Chem 89:207–251

    Article  CAS  Google Scholar 

  39. Chikhale RV, Pant AM, Menghani SS, Wadibhasme PG, Khedekar PB (2017) Arab J Chem 10:715–725

    Article  CAS  Google Scholar 

  40. Patil M, Karhle S, Ubale P, Helavi V (2017) Der Chemica Sinica 8:198–205

    CAS  Google Scholar 

  41. Khan MM, Khan S, Saigal SSC (2018) ChemistrySelect 3:1371–1380

    Article  CAS  Google Scholar 

  42. Kodape MA, Gawhale ND, Awjare NV (2015) Indian J Chem 54B:671–675

    CAS  Google Scholar 

  43. Selvam NP, Perumal PT (2006) Tetrahedron Lett 47:7481–7483

    Article  CAS  Google Scholar 

  44. Hajipour AR, Ghayeb Y, Sheikhan N, Ruoho AE (2009) Tetrahedron Lett 50:5649–5651

    Article  CAS  Google Scholar 

  45. Kotadia DA, Soni SS (2012) J Mol Catal A 353:44–49

    Article  CAS  Google Scholar 

  46. Patil M, Karhle S, Ubale P, Helavi V (2017) Der Pharm Chem 9:28–32

    CAS  Google Scholar 

  47. Morbale ST, Jadhav SD, Deshmukh MB, Patil SS (2015) RSC Adv 5:84610–84620

    Article  CAS  Google Scholar 

  48. Bakht MA (2015) Bull Environ Pharmacol Life Sci 4:79–85

    Google Scholar 

  49. Saha A, Jana A, Choudhury LH (2018) New J Chem 42:17909–17922

    Article  CAS  Google Scholar 

  50. Hafez EAA, Elnagdi MH, Elagamey AGA, El-Taweel FMAA (1987) Heterocycles 26:903–907

    Article  CAS  Google Scholar 

  51. Sofan MA, El-Taweel FM, Elagamey AGA, Elnagdi MH (1989) Liebigs Ann Chem 9:935–936

    Article  Google Scholar 

  52. Bonsignore L, Loy G, Secci D, Calignano A (1993) Eur J Med Chem 28:517–520

    Article  CAS  Google Scholar 

  53. Bhosale HD et al (2018) Eur Chem Bull 7:120–122

    Article  CAS  Google Scholar 

  54. Britannica, T. Editors of Encyclopaedia (2020). Banana. Encyclopedia Britannica. https://www.britannica.com/plant/banana-plant. Accessed 31 May 2021

  55. Nayar NM (2010) In Janick J (ed) Horticultural Reviews, vol 36. Wiley-Blackwell, Hoboken, NJ

  56. Netshiheni RK et al (2019) In: Jideani AIO (ed) Banana Bioactives: Absorption, Utilization and Health Benefits. https://doi.org/10.5772/intechopen.83369

  57. Cheesman EE (1948) Kew Bull 3:145–153

    Article  Google Scholar 

  58. Voora V et al (2020) In: Balino S (ed) Global Market Report: Bananas. International Institute for Sustainable Development, Canada

  59. Archibald JG (1949) J Dairy Sci 32:969–971

    Article  CAS  Google Scholar 

  60. Sarma AK et al (2014) Catal Lett 144:1344–1353

    Article  CAS  Google Scholar 

  61. Ho LH et al (2012) Int Food Res J 19:1479–1485

    CAS  Google Scholar 

  62. Pathak S, Deka DC (2016) J Chem Pharm Res 8:486–491

    CAS  Google Scholar 

  63. Basumatary S (2015) Int J Chem Tech Res 7:2265–2271

    CAS  Google Scholar 

  64. Fan M et al (2019) Green Energy Environ 4:322–327

    Article  Google Scholar 

  65. Morais DR et al (2017) J Braz Chem Soc 28:308–318

    CAS  Google Scholar 

  66. Anhwange BA (2008) J Food Technol 6:263–266

    CAS  Google Scholar 

  67. Dakin HD (1909) Am Chem J 42:477–498

    Google Scholar 

  68. Saikia B, Borah P, Barua NC (2015) Green Chem 17:4533–4536

    Article  CAS  Google Scholar 

  69. Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  70. Kotha S, Lahiri K, Dhurke K (2002) Tetrahedron 58:9633–9695

    Article  CAS  Google Scholar 

  71. Boruah PR, Ali AA, Saikia B, Sarma D (2015) Green Chem 17:1442–1445

    Article  CAS  Google Scholar 

  72. Henry L (1895) C R Chim 120:1265–1268

    CAS  Google Scholar 

  73. Ono N (2001) The nitro group in organic synthesis. Wiley-VCH, New York

    Book  Google Scholar 

  74. Surneni N, Barua NC, Saikia B (2016) Tetrahedron Lett 2814–2817

  75. Marinkovic DM et al (2016) Renew Sustain Energy Rev 56:1387–1408

    Article  CAS  Google Scholar 

  76. Pathak G, Rajkumari K, Rokhum L (2019) Nanoscale Adv 1:1013–1020

    Article  CAS  Google Scholar 

  77. Betiku E, Mistura-Akintunde A, Ojumu V (2016) Energy 103:797–806

    Article  CAS  Google Scholar 

  78. Rajkumari K, Rokhum L (2020) Biomass Conv Bioref 10:839–848

    Article  CAS  Google Scholar 

  79. Dwivedi KD, Borah B, Chowhan LR (2020) Front Chem 7:944

    Article  CAS  Google Scholar 

  80. Bagul SD, Rajput JD, Bendre RS (2017) Environ Chem Lett 15:725–731

    Article  CAS  Google Scholar 

  81. Saikia B (2008) Lett Org Chem 15:503–507

    Article  CAS  Google Scholar 

  82. Sangeetha M, Rajendran S, Sathiyabama J, Prabhakar P (2012) J Nat Prod Plant Resour 2:601–610

    CAS  Google Scholar 

  83. Allahi A, Akhlaghinia B (2020) Phosphorus Sulfur Silicon Relat Elem 196:328–336. https://doi.org/10.1080/10426507.2020.1835905

    Article  CAS  Google Scholar 

  84. Kantharaju K, Hiremath PB, Khatavi SY (2019) Indian J Chem 58B:706–713

    CAS  Google Scholar 

  85. Yong JWH, Ge L, Ng YF, Tan SN (2009) Molecules 14:5144–5164

    Article  CAS  Google Scholar 

  86. Fonseca AM, Monte FJQ, Oliveira MCF, Mattos MC, Cordell GA, Braz-Filho R, Lemos TLG (2009) J Mol Catal B: Enzymatic 57:78–82

    Article  CAS  Google Scholar 

  87. Pore S, Rashinkar G, Mote K, Salunkhe R (2010) Chem Biodivers 7:1796–1800

    Article  CAS  Google Scholar 

  88. Mote K, Pore S, Rashinkar G, Kamble S, Kumbhar A, Salunkhe R (2010) Arch Appl Sci Res 2:74–80

    CAS  Google Scholar 

  89. Patil SS, Jadhav SD, Mane SY (2011) Inter J Org Chem 1:125–131

    Article  CAS  Google Scholar 

  90. Losfeld G et al (2012) Green Chem Lett Rev 5:451–456

    Article  CAS  Google Scholar 

  91. Leyva E et al (2012) Rev Latinoam Quim 40:140–147

    CAS  Google Scholar 

  92. Sarmah M, Diwan A, Mondal M, Thakur AJ, Bora U (2016) RSC Adv 6:28981–28985

    Article  CAS  Google Scholar 

  93. Patil UP, Patil RC, Patil SS (2019) J Hetero Chem 56:1898–1913

    Article  CAS  Google Scholar 

  94. Maity HS, Misra K, Mahata T, Nag A (2016) RSC Adv 6:24446–24450

    Article  CAS  Google Scholar 

  95. Patil RC, Patil UP, Jagdale AA, Shinde SK, Patil SS (2020) Res Chem Intermed 46:3527–3543

    Article  CAS  Google Scholar 

  96. Pal R (2014) Indian J Chem 53B:763–768

    CAS  Google Scholar 

  97. Howden AJM, Preston GM (2009) Microb Biotechnol 2:441–451

    Article  CAS  Google Scholar 

  98. Thimann KV, Mahadevan S (1964) Arch Biochem Biophys 105:133–141

    Article  CAS  Google Scholar 

  99. DeSantis et al (2002) J Am Chem Soc 124:9024

    Article  CAS  Google Scholar 

  100. Taghavi F, Gholizadeh M, Saljooghi AS, Ramezani M (2016) RSC Adv 6:87082–87087

    Article  CAS  Google Scholar 

  101. Adrom B, Maghsoodlou MT, Lashkari M, Hazeri N, Doostmohammadi R (2016) Syn React Inorg Metaorg Nanometal Chem 46:423–427

    Article  CAS  Google Scholar 

  102. Shinde S, Damate S, Morbale S, Patil M, Patil SS (2017) RSC Adv 7:7315

    Article  CAS  Google Scholar 

  103. Chavan HV, Bandgar BP (2013) Sustain Chem Eng 1:929–936

    Article  CAS  Google Scholar 

  104. Nazeruddin GM, Shaikh YI (2014) Der Pharmacia Sinica 5:64–68

    Google Scholar 

  105. Jadhav GD et al (2020) Curr Organocatal 7:140–148

    Article  CAS  Google Scholar 

  106. Mali S, Shinde S, Damte S, Patil SS (2018) R Soc Open Sci 5:170333

    Article  CAS  Google Scholar 

  107. Ohwaki Y, Hirata H (2012) Soil Sci Plant Nutr 38:235–243

    Article  Google Scholar 

  108. Patil UP, Patil RC, Patil SS (2021) Org Prep Proced Int 53:190–199

    Article  CAS  Google Scholar 

  109. Clark J, Deswarte F (2015) Introduction to chemicals from biomass. Wiley, Oxford, UK

    Book  Google Scholar 

  110. Rascio N, Navari-Izzo F (2011) Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  111. Zeng Q, Chen R, Zhao X, Wang H, Shen R (2011) Pedosphere 21:358–364

    Article  Google Scholar 

  112. McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ

    Book  Google Scholar 

  113. Haverkamp RG, Marshall AT, Agterveld D (2007) J Nanopart Res 9:697–700

    Article  CAS  Google Scholar 

  114. Watanabe T, Osaki M, Yoshihara T, Tadano T (1998) Plant Soil 201:165–173

    Article  CAS  Google Scholar 

  115. Escande V, Olszewski TK, Grison C (2014) C R Chim 17:731–737

    Article  CAS  Google Scholar 

  116. Losfeld G et al (2012) Catal Today 189:111–116

    Article  CAS  Google Scholar 

  117. Viriya-empikul N et al (2010) Bioresour Technol 101:3765–3767

    Article  CAS  Google Scholar 

  118. Obadiah A, Swaroopa GA, Kumar SV, Jeganathan KR, Ramasubbu A (2012) Bioresour Technol 116:512–516

    Article  CAS  Google Scholar 

  119. Kracke F, Wong AB, Maegaard K, Deutzmann JS, Hubert MA, Hahn C, Jaramillo TF, Spormann AM (2019) Commun Chem 2:45

    Article  CAS  Google Scholar 

  120. Patil SS, Jadhav SD, Deshmukh MB (2013) J Chem Sci 125:851–857

    Article  CAS  Google Scholar 

  121. Konwar M, Chetia M, Sharma D (2019) Topic Curr Chem 377:6

    Article  CAS  Google Scholar 

  122. Morbale ST, Shinde SK, Jadhav SD, Deshmukh MB, Patil SS (2015) Der Pharm Lett 7:169–182

    CAS  Google Scholar 

  123. Patil UP, Patil RC, Patil SS (2020) Reac Kinet Mech Cat 129:679–691

    Article  CAS  Google Scholar 

  124. Taleb MA et al (2016) J Mater Environ Sci 7:4580–4588

    CAS  Google Scholar 

  125. Ding X, Zhang X, Dong C, Guan Z, He YH (2018) Catal Lett 148:757–763

    Article  CAS  Google Scholar 

  126. Li Z, Hong H, Lv G (2015) Adv Mater Sci Eng 1–2

  127. Rosas-Hernandez A, Steinlechner C, Junge H et al (2018) Top Curr Chem 376:1

    Article  CAS  Google Scholar 

  128. Carney JR, Dillon BR, Thomas SP (2016) Eur J Org Chem 23:3912–3931

    Article  CAS  Google Scholar 

  129. Dhakshinamoorthy A, Pitchumani K (2005) Appl Catal A Gen 292:305

    Article  CAS  Google Scholar 

  130. Tamaddon F, Tayefi M, Hosseini EH, Zare E (2013) J Mol Catal A Chem 366:36–42

    Article  CAS  Google Scholar 

  131. The known unknowns of plastic pollution. The Economist (2018) https://www.economist.com/international/2018/03/03/the-known-unknowns-of-plastic-pollution

  132. Mathieu-Denoncourt J, Wallace SJ, Solla SR, Langlois VS (2015) Gen Comp Endocrinol 219:74–88

    Article  CAS  Google Scholar 

  133. Lopez A, Marco L, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Appl Catal B-Environ 104:211–219

    Article  CAS  Google Scholar 

  134. Liu Q, Xin R, Li C, Xu C, Yang J (2013) J Environ Sci 25:823–829

    Article  CAS  Google Scholar 

  135. Dar BA, Mohasin M, Basit A, Farooqui M (2013) J Saudi Chem Soci 17:177–180

    Article  CAS  Google Scholar 

  136. Sheikhhosseini E et al (2016) Iran J Chem Chem Eng 35:43–50

    CAS  Google Scholar 

  137. Wada S, Suzuki H (2003) Tetrahedron Lett 44:399–401

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed.

Corresponding author

Correspondence to U. P. Patil.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

All authors approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1076 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, U.P., Patil, S.S. Natural Feedstock in Catalysis: A Sustainable Route Towards Organic Transformations. Top Curr Chem (Z) 379, 36 (2021). https://doi.org/10.1007/s41061-021-00346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00346-6

Keywords

Navigation