Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 13, 2021

Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications

  • Jessica Daniela Schroder , Julia Beatrice de Araújo , Tacio de Oliveira , Airam Barbosa de Moura , Gabriel Rodrigo Fries , João Quevedo , Gislaine Zilli Réus and Zuleide Maria Ignácio ORCID logo EMAIL logo

Abstract

Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.


Corresponding author: Zuleide Maria Ignácio, Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 – Km 02, Fronteira Sul, Postal Code: 89815-899 Chapecó, SC, Brazil; and Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 – Bairro Universitário Postal Code: 88806-000 Criciúma, SC, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth). Laboratory of Translational Psychiatry (Brazil) is one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Its research is supported by grants from CNPq (JQ, GZR, and ZMI), FAPESC (JQ, GZR, and ZMI), Instituto Cérebro e Mente (JQ, and GZR), UFFS (ZMI), and UNESC (JQ, and GZR). JQ is a 1A CNPq Research Fellow.

  3. Conflict of interest statement: None to declare.

References

Ain, Q., Schmeer, C., Penndorf, D., Fischer, M., Bondeva, T., Förster, M., Haenold, R., Witte, O.W., and Kretz, A. (2018). Cell cycle-dependent and -independent telomere shortening accompanies murine brain aging. Aging 10: 3397–3420, https://doi.org/10.18632/aging.101655.Search in Google Scholar

Alfarez, D.N., Wiegert, O., Joels, M., and Krugers, H.J. (2002). Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation. Neuroscience 115: 1119–1126, https://doi.org/10.1016/s0306-4522(02)00483-9.Search in Google Scholar

Amidfar, M., Réus, G.Z., Quevedo, J., Kim, Y.-K., and Arbabi, M. (2017). Effect of co-administration of memantine and sertraline on the antidepressant-like activity and brain-derived neurotrophic factor (BDNF) levels in the rat brain. Brain Res. Bull. 128: 29–33, https://doi.org/10.1016/j.brainresbull.2016.11.003.Search in Google Scholar PubMed

Appleton, K.M., Rogers, P.J., and Ness, A.R. (2010). Updated systematic review and meta-analysis of the effects of n−3 long-chain polyunsaturated fatty acids on depressed mood. Am. J. Clin. Nutr. 91: 757–770, https://doi.org/10.3945/ajcn.2009.28313.Search in Google Scholar PubMed

Arai, Y., Hirose, N., Yamamura, K., Shimizu, K., Takayama, M., Ebihara, Y., and Osono, Y. (2001). Serum insulin-like growth factor-1 in centenarians implications of IGF-1 as a rapid turnover protein. J. Gerontol. Biol. Med. Sci. 56: M79–M82, https://doi.org/10.1093/gerona/56.2.m79.Search in Google Scholar PubMed

Arsenis, N.C., You, T., Ogawa, E.F., Tinsley, G.M., and Zuo, L. (2017). Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget 8: 45008–45019, https://doi.org/10.18632/oncotarget.16726.Search in Google Scholar PubMed PubMed Central

Autry, A.E. and Monteggia, L.M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 64: 238–258, https://doi.org/10.1124/pr.111.005108.Search in Google Scholar PubMed PubMed Central

Avitsur, R., Stark, J.L., and Sheridan, J.F. (2001). Social stress induces glucocorticoid resistance in subordinate animals. Horm. Behav. 39: 247–257, https://doi.org/10.1006/hbeh.2001.1653.Search in Google Scholar PubMed

Barbieri, M., Paolisso, G., Kimura, M., Gardner, J.P., Boccardi, V., Papa, M., Hjelmborg, J.V., Christensen, K., Brimacombe, M., Nawrot, T.S., et al.. (2009). Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech. Ageing Dev. 130: 771–776, https://doi.org/10.1016/j.mad.2009.10.002.Search in Google Scholar PubMed

Barnes, R.P., Fouquerel, E., and Opresko, P.L. (2019). The impact of oxidative DNA damage and stress on telomere homeostasis. Mech. Ageing Dev. 177: 37–45, https://doi.org/10.1016/j.mad.2018.03.013.Search in Google Scholar PubMed PubMed Central

Barrientos, R.M., Thompson, V.M., Kitt, M.M., Amat, J., Hale, M.W., Frank, M.G., Crysdale, N.Y., Stamper, C.E., Hennessey, P.A., Watkins, L.R., et al.. (2015). Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiol. Aging 36: 1483–1495, https://doi.org/10.1016/j.neurobiolaging.2014.12.003.Search in Google Scholar PubMed PubMed Central

Baruch-Eliyahu, N., Rud, V., Braiman, A., and Priel, E. (2019). Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes. Sci. Rep. 9: 18118, https://doi.org/10.1038/s41598-019-54741-7.Search in Google Scholar PubMed PubMed Central

Basta-Kaim, A., Szczesny, E., Glombik, K., Stachowicz, K., Slusarczyk, J., Nalepa, I., Zelek- Molik, A., Rafa- Zablocka, K., Budziszewska, B., Kubera, M., et al.. (2014). Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats. Eur. Neuropsychopharmacol 24: 1546–1556, https://doi.org/10.1016/j.euroneuro.2014.07.002.Search in Google Scholar PubMed

Bellavance, M.A. and Rivest, S. (2014). The HPA – immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 5: 136, https://doi.org/10.3389/fimmu.2014.00136.Search in Google Scholar PubMed PubMed Central

Belmaker, R.H. and Agam, G. (2008). Major depressive disorder. N. Engl. J. Med. 358: 55–68, https://doi.org/10.1056/nejmra073096.Search in Google Scholar PubMed

Belsky, J. and Pluess, M. (2009). Beyond diathesis stress: differential susceptibility to environmental influences. Psychol. Bull. 135: 885–908, https://doi.org/10.1037/a0017376.Search in Google Scholar PubMed

Belzeaux, R., Fiori, L.M., Lopez, J.P., Boucekine, M., Boyer, L., Blier, P., Farzan, F., Frey, B.N., Giacobbe, P., Lam, R.W., et al.. (2019). Predicting worsening suicidal ideation with clinical features and peripheral expression of messenger RNA and MicroRNA during antidepressant treatment. J. Clin. Psychiatr. 80: 18m12556, https://doi.org/10.4088/JCP.18m12556.Search in Google Scholar PubMed

Bijanki, K.R., Hodis, B., Brumm, M.C., Harlynn, E.L., and McCormick, L.M. (2014). Hippocampal and left subcallosal anterior cingulate atrophy in psychotic depression. PloS One 9: e110770, https://doi.org/10.1371/journal.pone.0110770.Search in Google Scholar PubMed PubMed Central

Bleker, L.S., De Rooij, S.R., and Roseboom, T.J. (2019). Programming effects of prenatal stress on neurodevelopment-the pitfall of introducing a self-fulfilling prophecy. Int. J. Environ. Res. Publ. Health 16: 2301, https://doi.org/10.3390/ijerph16132301.Search in Google Scholar PubMed PubMed Central

Bocchio-Chiavetto, L., Bagnardi, V., Zanardini, R., Molteni, R., Nielsen, M.G., Placentino, A., Giovannini, C., Rillosi, L., Ventriglia, M., Riva, M.A., et al.. (2010). Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. World J. Biol. Psychiatr. 11: 763–773, https://doi.org/10.3109/15622971003611319.Search in Google Scholar PubMed

Bonafè, M., Barbieri, M., Marchegiani, F., Olivieri, F., Ragno, E., Giampieri, C., Mugianesi, E., Centurelli, M., Franceschi, C., and Paolisso, G. (2003). Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J. Clin. Endocrinol. Metab. 88: 3299–3304, https://doi.org/10.1210/jc.2002-021810.Search in Google Scholar PubMed

Bradley, B., Davis, T.A., Wingo, A.P., Mercer, K.B., and Ressler, K.J. (2013). Family environment and adult resilience: contributions of positive parenting and the oxytocin receptor gene. Eur. J. Psychotraumatol. 4: 21659, https://doi.org/10.3402/ejpt.v4i0.21659.Search in Google Scholar PubMed PubMed Central

Bradshaw, P.S., Stavropoulos, D.J., and Meyn, M.S. (2005). Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat. Genet. 37: 193–197, https://doi.org/10.1038/ng1506.Search in Google Scholar PubMed

Brody, G.H., Chen, Y., Beach, S.R.H., Kogan, S.M., Yu, T., DiClemente, R.J., Wingood, G.M., Windle, M., and Philibert, R.A. (2014). Differential sensitivity to prevention programming: a dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychol. 33: 182–191, https://doi.org/10.1037/a0031253.Search in Google Scholar PubMed PubMed Central

Brugts, M.P., van den Beld, A.W., Hofland, L.J., van der Wansem, K., van Koetsveld, P.M., Frystyk, J., Lamberts, S.W.J., and Janssen, J.A.M.J.L. (2008). Low circulating insulin-like growth factor I bioactivity in elderly men is associated with increased mortality. J. Clin. Endocrinol. Metab. 93: 2515–2522, https://doi.org/10.1210/jc.2007-1633.Search in Google Scholar PubMed

Brunton, P.J. (2013). Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring. Reproduction 146: 175–189, https://doi.org/10.1530/REP-13-0258.Search in Google Scholar PubMed

Cai, Z., Yan, L.J., and Ratka, A. (2013). Telomere shortening and Alzheimer’s disease. NeuroMolecular Med. 15: 25–48, https://doi.org/10.1007/s12017-012-8207-9.Search in Google Scholar PubMed

Cain, D.W. and Cidlowski, J.A. (2017). Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17: 233–247, https://doi.org/10.1038/nri.2017.1.Search in Google Scholar PubMed

Casavant, S.G., Cong, X., Moore, J., and Starkweather, A. (2019). Associations between preterm infant stress, epigenetic alteration, telomere length and neurodevelopmental outcomes: a systematic review. Early Hum. Dev. 131: 63–74, https://doi.org/10.1016/j.earlhumdev.2019.03.003.Search in Google Scholar PubMed

Cassidy, A., De Vivo, I., Liu, Y., Han, J., Prescott, J., Hunter, D.J., and Rimm, E.B. (2010). Associations between diet, lifestyle factors, and telomere length in women. Am. J. Clin. Nutr. 91: 1273–1280, https://doi.org/10.3945/ajcn.2009.28947.Search in Google Scholar PubMed PubMed Central

Catala, A. (2011). Lipid peroxidation of membrane phospholipids in the vertebrate retina. Front Biosci (Sch. Ed.) 3: 52–60, https://doi.org/10.2741/s131.Search in Google Scholar PubMed

Catalá, A. (2012). Lipid peroxidation modifies the picture of membranes from the “fluid mosaic model” to the “lipid whisker model”. Biochimie 94: 101–109, https://doi.org/10.1016/j.biochi.2011.09.025.Search in Google Scholar PubMed

Cerqueira, J.J., Pêgo, J.M., Taipa, R., Bessa, J.M., Almeida, O.F.X., and Sousa, N. (2005). Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J. Neurosci. 25: 7792–7800, https://doi.org/10.1523/jneurosci.1598-05.2005.Search in Google Scholar

Chan, J.C., Morgan, C.P., Adrian Leu, N., Shetty, A., Cisse, Y.M., Nugent, B.M., Morrison, K.E., Jašarević, E., Huang, W., Kanyuch, N., et al.. (2020). Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat. Commun. 11: 1499, https://doi.org/10.1038/s41467-020-15305-w.Search in Google Scholar PubMed PubMed Central

Chandrika, U.G. and Prasad Kumarab, P.A.A.S. (2015). Gotu Kola (Centella asiatica): nutritional properties and plausible health benefits. Adv. Food Nutr. Res. 76: 125–157, https://doi.org/10.1016/bs.afnr.2015.08.001.Search in Google Scholar PubMed

Chelombitko, M.A. (2018). Role of reactive oxygen species in inflammation: a minireview. Moscow Univ. Biol. Sci. Bull. 73: 199–202, https://doi.org/10.3103/s009639251804003x.Search in Google Scholar

Cherkas, L.F. (2008). The association between physical activity in leisure time and leukocyte telomere length. Arch. Intern. Med. 168: 154, https://doi.org/10.1001/archinternmed.2007.39.Search in Google Scholar PubMed

Choi, J., Fauce, S.R., and Effros, R.B. (2008). Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22: 600–605, https://doi.org/10.1016/j.bbi.2007.12.004.Search in Google Scholar PubMed PubMed Central

Choi, J.H., Lee, C.H., Hwang, I.K., Won, M.H., Seong, J.K., Yoon, Y.S., Lee, H.S., and Lee, I.S. (2007). Age-related changes in ionized calcium-binding adapter molecule 1 immunoreactivity and protein level in the gerbil hippocampal CA1 region. J. Vet. Med. Sci. 69: 1131–1136, https://doi.org/10.1292/jvms.69.1131.Search in Google Scholar PubMed

Chopra, K.K., Ravindran, A., Kennedy, S.H., Mackenzie, B., Matthews, S., Anisman, H., Bagby, R.M., Farvolden, P., and Levitan, R.D. (2009). Sex differences in hormonal responses to a social stressor in chronic major depression. Psychoneuroendocrinology 34: 1235–1241, https://doi.org/10.1016/j.psyneuen.2009.03.014.Search in Google Scholar PubMed

Chung, H.K., Cheong, C., Song, J., and Lee, H.W. (2005). Extratelomeric functions of telomerase. Curr. Mol. Med. 5: 233–241, https://doi.org/10.2174/1566524053586635.Search in Google Scholar PubMed

Cole, J.H., Marioni, R.E., Harris, S.E., and Deary, I.J. (2019). Brain age and other bodily “ages”: implications for neuropsychiatry. Mol. Psychiatr. 24: 266–281, https://doi.org/10.1038/s41380-018-0098-1.Search in Google Scholar PubMed PubMed Central

Conner, T.S., Richardson, A.C., and Miller, J.C. (2015). Optimal serum selenium concentrations are associated with lower depressive symptoms and negative mood among young adults. J. Nutr. 145: 59–65, https://doi.org/10.3945/jn.114.198010.Search in Google Scholar PubMed

Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. Faseb. J. 17: 1195–1214, https://doi.org/10.1096/fj.02-0752rev.Search in Google Scholar PubMed

Cornejo, F. and von Bernhardi, R. (2016). Age-dependent changes in the activation and regulation of microglia. Adv. Exp. Med. Biol. 949: 205–226, https://doi.org/10.1007/978-3-319-40764-7_10.Search in Google Scholar PubMed

Damjanovic, A.K., Yang, Y., Glaser, R., Kiecolt-Glaser, J.K., Nguyen, H., Laskowski, B., Zou, Y., Beversdorf, D.Q., and Weng, N. (2007). Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J. Immunol. 179: 4249–4254, https://doi.org/10.4049/jimmunol.179.6.4249.Search in Google Scholar PubMed PubMed Central

Das, S.K., Barhwal, K., Hota, S.K., Thakur, M.K., and Srivastava, R.B. (2015). Disrupting monotony during social isolation stress prevents early development of anxiety and depression like traits in male rats. BMC Neurosci. 16: 2, https://doi.org/10.1186/s12868-015-0141-y.Search in Google Scholar PubMed PubMed Central

David, S.S., O’Shea, V.L., and Kundu, S. (2007). Base-excision repair of oxidative DNA damage. Nature 447: 941–950, https://doi.org/10.1038/nature05978.Search in Google Scholar PubMed PubMed Central

De Carlo, V., Calati, R., and Serretti, A. (2016). Socio-demographic and clinical predictors of non-response/non-remission in treatment resistant depressed patients: a systematic review. Psychiatr. Res. 240: 421–430, https://doi.org/10.1016/j.psychres.2016.04.034.Search in Google Scholar PubMed

De Pablos, R.M., Herrera, A.J., Espinosa-Oliva, A.M., Sarmiento, M., Muñoz, M.F., Machado, A., and Venero, J.L. (2014). Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J. Neuroinflammation 11: 34, https://doi.org/10.1186/1742-2094-11-34.Search in Google Scholar PubMed PubMed Central

Dean, J. and Keshavan, M. (2017). The neurobiology of depression: an integrated view. Asian J. Psychiatr. 27: 101–111, https://doi.org/10.1016/j.ajp.2017.01.025.Search in Google Scholar

Demissie, S., Levy, D., Benjamin, E.J., Cupples, L.A., Gardner, J.P., Herbert, A., Kimura, M., Larson, M.G., Meigs, J.B., Keaney, J.F., et al.. (2006). Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5: 325–330, https://doi.org/10.1111/j.1474-9726.2006.00224.x.Search in Google Scholar

Deng, W., Cheung, S.T., Tsao, S.W., Wang, X.M., and Tiwari, A.F.Y. (2016). Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: a systematic review. Psychoneuroendocrinology 64: 150–163, https://doi.org/10.1016/j.psyneuen.2015.11.017.Search in Google Scholar

DiSabato, D.J., Quan, N., and Godbout, J.P. (2016). Neuroinflammation: the devil is in the details. J. Neurochem. 139: 136–153, https://doi.org/10.1111/jnc.13607.Search in Google Scholar

Drury, S.S., Theall, K., Gleason, M.M., Smyke, A.T., De Vivo, I., Wong, J.Y.Y., Fox, N.A., Zeanah, C.H., and Nelson, C.A. (2012). Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol. Psychiatr. 17: 719–727, https://doi.org/10.1038/mp.2011.53.Search in Google Scholar

Duman, R.S. (2002). Pathophysiology of depression: the concept of synaptic plasticity. Eur. Psychiatr. 17: 306s–310s, https://doi.org/10.1016/s0924-9338(02)00654-5.Search in Google Scholar

Duman, R.S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. NeuroMolecular Med. 5: 11–25, https://doi.org/10.1385/NMM:5:1:011.10.1385/NMM:5:1:011Search in Google Scholar

Duncan, J., Johnson, S., and Ou, X.-M. (2012). Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov. Therapeut. 6: 112–122, https://doi.org/10.5582/ddt.2012.v6.3.112.Search in Google Scholar

Duvarci, S. and Paré, D. (2007). Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J. Neurosci. 27: 4482–4491, https://doi.org/10.1523/jneurosci.0680-07.2007.Search in Google Scholar

Ebrecht, M., Buske-Kirschbaum, A., Hellhammer, D., Kern, S., Rohleder, N., Walker, B., and Kirschbaum, C. (2000). Tissue specificity of glucocorticoid sensitivity in healthy adults. J. Clin. Endocrinol. Metab. 85: 3733–3739, https://doi.org/10.1210/jcem.85.10.6891.Search in Google Scholar

Elkahloun, A.G. and Saavedra, J.M. (2020). Candesartan neuroprotection in rat primary neurons negatively correlates with aging and senescence: a transcriptomic analysis. Mol. Neurobiol. 57: 1656–1673, https://doi.org/10.1007/s12035-019-01800-9.Search in Google Scholar PubMed PubMed Central

Epel, E.S. and Prather, A.A. (2018). Stress, telomeres, and psychopathology: toward a deeper understanding of a triad of early aging. Annu. Rev. Clin. Psychol. 14: 371–397, https://doi.org/10.1146/annurev-clinpsy-032816-045054.Search in Google Scholar PubMed PubMed Central

Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4: 1313–1317, https://doi.org/10.1038/3305.Search in Google Scholar PubMed

Fitzgerald, P., O’Brien, S.M., Scully, P., Rijkers, K., Scott, L.V., and Dinan, T.G. (2006). Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol. Med. 36: 37–43, https://doi.org/10.1017/s003329170500632x.Search in Google Scholar

Fjell, A.M., Westlye, L.T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Dale, A.M., and Walhovd, K.B. (2014). Alzheimer disease neuroimaging initiative. Accelerating cortical thinning: unique to dementia or universal in aging? Cerebr. Cortex 24: 919–934, https://doi.org/10.1093/cercor/bhs379.Search in Google Scholar PubMed PubMed Central

Fonken, L.K., Frank, M.G., Gaudet, A.D., and Maier, S.F. (2018a). Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain Behav. Immun. 73: 133–148, https://doi.org/10.1016/j.bbi.2018.07.012.Search in Google Scholar PubMed PubMed Central

Fonken, L.K., Frank, M.G., Gaudet, A.D., D’Angelo, H.M., Daut, R.A., Hampson, E.C., Ayala, M.T., Watkins, L.R., and Maier, S.F. (2018b). Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain Behav. Immun. 70: 257–267, https://doi.org/10.1016/j.bbi.2018.03.005.Search in Google Scholar PubMed PubMed Central

Fotenos, A.F., Snyder, A.Z., Girton, L.E., Morris, J.C., and Buckner, R.L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64: 1032–1039, https://doi.org/10.1212/01.wnl.0000154530.72969.11.Search in Google Scholar PubMed

Fouquerel, E., Barnes, R.P., Uttam, S., Watkins, S.C., Bruchez, M.P., and Opresko, P.L. (2019). Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol. Cell. 75: 117–130, https://doi.org/10.1016/j.molcel.2019.04.024.Search in Google Scholar PubMed PubMed Central

Fox, E., Ridgewell, A., and Ashwin, C. (2009). Looking on the bright side: biased attention and the human serotonin transporter gene. Proc. R. Soc. B Biol. Sci. 276: 1747–1751, https://doi.org/10.1098/rspb.2008.1788.Search in Google Scholar PubMed PubMed Central

Frank, M.G., Baratta, M.V., Sprunger, D.B., Watkins, L.R., and Maier, S.F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21: 47–59, https://doi.org/10.1016/j.bbi.2006.03.005.Search in Google Scholar

Frank, M.G., Fonken, L.K., Dolzani, S.D., Annis, J.L., Siebler, P.H., Schmidt, D., Watkins, L.R., Maier, S.F., and Lowry, C.A. (2018). Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain Behav. Immun. 73: 352–363, https://doi.org/10.1016/j.bbi.2018.05.020.Search in Google Scholar

Frank, M.G., Miguel, Z.D., Watkins, L.R., and Maier, S.F. (2010). Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav. Immun. 24: 19–30, https://doi.org/10.1016/j.bbi.2009.07.008.Search in Google Scholar

Frank, M.G., Watkins, L.R., and Maier, S.F. (2013). Stress-induced glucocorticoids as a neuroendocrine alarm signal of danger. Brain Behav. Immun. 33: 1–6, https://doi.org/10.1016/j.bbi.2013.02.004.Search in Google Scholar

Fu, W., Lu, C., and Mattson, M.P. (2002). Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons. J. Neurosci. 22: 10710–10719, https://doi.org/10.1523/jneurosci.22-24-10710.2002.Search in Google Scholar

Gelaye, B., Rondon, M.B., Araya, R., and Williams, M.A. (2016). Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatr. 3: 973–982, https://doi.org/10.1016/s2215-0366(16)30284-x.Search in Google Scholar

Germann, C.B. (2020). The psilocybin-telomere hypothesis: an empirically falsifiable prediction concerning the beneficial neuropsychopharmacological effects of psilocybin on genetic aging. Med. Hypotheses 134: 109406, https://doi.org/10.1016/j.mehy.2019.109406.Search in Google Scholar PubMed

Gotlib, I.H., LeMoult, J., Colich, N.L., Foland-Ross, L.C., Hallmayer, J., Joormann, J., Lin, J., and Wolkowitz, O.M. (2015). Telomere length and cortisol reactivity in children of depressed mothers. Mol. Psychiatr. 20: 615–620, https://doi.org/10.1038/mp.2014.119.Search in Google Scholar PubMed PubMed Central

Grabert, K., Michoel, T., Karavolos, M.H., Clohisey, S., Baillie, J.K., Stevens, M.P., Freeman, T.C., Summers, K.M., and McColl, B.W. (2016). Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19: 504–516, https://doi.org/10.1038/nn.4222.Search in Google Scholar PubMed PubMed Central

Green, J.G., McLaughlin, K.A., Berglund, P.A., Gruber, M.J., Sampson, N.A., Zaslavsky, A.M., and Kessler, R.C. (2010). Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch. Gen. Psychiatr. 67: 113–123, https://doi.org/10.1001/archgenpsychiatry.2009.186.Search in Google Scholar PubMed PubMed Central

Groves, J.O. (2007). Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatr. 12: 1079–1088, https://doi.org/10.1038/sj.mp.4002075.Search in Google Scholar PubMed

Guu, T.-W., Mischoulon, D., Sarris, J., Hibbeln, J., McNamara, R.K., Hamazaki, K., Freeman, M.P., Maes, M., Matsuoka, Y.J., Belmaker, R.H., et al.. (2020). A multi-national, multi-disciplinary Delphi consensus study on using omega-3 polyunsaturated fatty acids (n-3 PUFAs) for the treatment of major depressive disorder. J. Affect. Disord. 265: 233–238, https://doi.org/10.1016/j.jad.2020.01.050.Search in Google Scholar PubMed

Halaris, A. (2017). Inflammation-associated co-morbidity between depression and cardiovascular disease. Curr. Top. Behav. Neurosci. 31: 45–70, https://doi.org/10.1007/7854_2016_28.Search in Google Scholar PubMed

Han, L., Aghajani, M., Clark, S.L., Chan, R.F., Hattab, M.W., Shabalin, A.A., Zhao, M., Kumar, G., Xie, L.Y., Jansen, R., et al.. (2018). Epigenetic aging in major depressive disorder. Am. J. Psychiatr. 175: 774–782, https://doi.org/10.1176/appi.ajp.2018.17060595.Search in Google Scholar PubMed PubMed Central

Hart, A.D., Wyttenbach, A., Perry, V.H., and Teeling, J.L. (2012). Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav. Immun. 26: 754–765, https://doi.org/10.1016/j.bbi.2011.11.006.Search in Google Scholar PubMed PubMed Central

Hartmann, N., Boehner, M., Groenen, F., and Kalb, R. (2010). Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease. Depress. Anxiety 27: 1111–1116, https://doi.org/10.1002/da.20749.Search in Google Scholar PubMed

Heard, E. and Martienssen, R.A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157: 95–109, https://doi.org/10.1016/j.cell.2014.02.045.Search in Google Scholar PubMed PubMed Central

Hellweg, R., Lang, U.E., Nagel, M., and Baumgartner, A. (2002). Subchronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol. Psychiatr. 7: 604–608, https://doi.org/10.1038/sj.mp.4001042.Search in Google Scholar PubMed

Henje Bloom, E., Han, L.K., Connolly, C.G., Ho, T.C., Lin, J., LeWinn, K.Z., Simmons, A.N., Sacchet, M.D., Mobayed, N., and Luna, M.E., et al. (2015). Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder. Transl. Psychiatry 5(Suppl. e676): 1–7, https://doi.org/10.1038/tp.2015.172.Search in Google Scholar PubMed PubMed Central

Herbet, M., Korga, A., Gawrońska-Grzywacz, M., Izdebska, M., Piątkowska-Chmiel, I., Poleszak, E., Wróbel, A., Matysiak, W., Jodłowska-Jędrych, B., and Dudka, J. (2017). Chronic variable stress is responsible for lipid and DNA oxidative disorders and activation of oxidative stress response genes in the brain of rats. Oxid. Med. Cell. Longev. 2017: 7313090, https://doi.org/10.1155/2017/7313090.Search in Google Scholar PubMed PubMed Central

Homberg, J.R. and Lesch, K.-P. (2011). Looking on the bright side of serotonin transporter gene variation. Biol. Psychiatr. 69: 513–519, https://doi.org/10.1016/j.biopsych.2010.09.024.Search in Google Scholar PubMed

Hoshaw, B.A., Hill, T.I., Crowley, J.J., Malberg, J.E., Khawaja, X., Rosenzweig-Lipson, S., Schechter, L.E., and Lucki, I. (2008). Antidepressant-like behavioral effects of IGF-I produced by enhanced serotonin transmission. Eur. J. Pharmacol. 594: 109–116, https://doi.org/10.1016/j.ejphar.2008.07.023.Search in Google Scholar PubMed PubMed Central

Huang, Y., Henry, C.J., Dantzer, R., Johnson, R.W., and Godbout, J.P. (2008). Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol. Aging 29: 1744–1753, https://doi.org/10.1016/j.neurobiolaging.2007.04.012.Search in Google Scholar PubMed PubMed Central

Ignácio, Z.M., da Silva, R.S., Plissari, M.E., Quevedo, J., and Réus, G.Z. (2019). Physical exercise and neuroinflammation in major depressive disorder. Mol. Neurobiol. 56: 8323–8335, https://doi.org/10.1007/s12035-019-01670-1.Search in Google Scholar PubMed

Ignácio, Z.M., Réus, G.Z., Abelaira, H.M., and Quevedo, J. (2014). Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression. Neuroscience 275: 455–468, https://doi.org/10.1016/j.neuroscience.2014.06.036.Search in Google Scholar PubMed

Ignácio, Z.M., Réus, G.Z., Quevedo, J., Kalinichev, M., and Francis, D. (2017a). Maternal deprivation. In: Stein, J. (Ed.), Reference module in neuroscience and biobehavioral psychology. Elsevier, 1–12, https://doi.org/10.1016/B978-0-12-809324-5.00352-7.Search in Google Scholar

Ignácio, Z.M., Réus, G.Z., Abelaira, H.M., Maciel, A.L., de Moura, A.B., Matos, D., Demo, J.P., da Silva, J.B., Gava, F.F., Valvassori, S.S., et al.. (2017b). Quetiapine treatment reverses depressive-like behavior and reduces DNA methyltransferase activity induced by maternal deprivation. Behav. Brain Res. 320: 225–232, https://doi.org/10.1016/j.bbr.2016.11.044.Search in Google Scholar PubMed

Jackson, S.P. and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461: 1071–1078, https://doi.org/10.1038/nature08467.Search in Google Scholar PubMed PubMed Central

Jacobs, J.J.L. (2013). Loss of telomeric protection: consequences and oportunities. Front. Oncol. 3: 88, https://doi.org/10.3389/fonc.2013.00088.Search in Google Scholar PubMed PubMed Central

Jaskelioff, M., Muller, F.L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A.C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadiñanos, J., et al.. (2011). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469: 102–106, https://doi.org/10.1038/nature09603.Search in Google Scholar PubMed PubMed Central

Jeon, S.W. and Kim, Y.-K. (2018). The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J. Inflamm. Res. 11: 179–192, https://doi.org/10.2147/jir.s141033.Search in Google Scholar

Jiang, Y., Da, W., Qiao, S., Zhang, Q., Li, X., Ivey, G., and Zilioli, S. (2019). Basal cortisol, cortisol reactivity, and telomere length: a systematic review and meta-analysis. Psychoneuroendocrinology 103: 163–172, https://doi.org/10.1016/j.psyneuen.2019.01.022.Search in Google Scholar

Johnson, J.D., Campisi, J., Sharkey, C.M., Kennedy, S.L., Nickerson, M., Greenwood, B.N., and Fleshner, M. (2005). Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135: 1295–1307, https://doi.org/10.1016/j.neuroscience.2005.06.090.Search in Google Scholar

Joosten, E.A.J. and Houweling, D.A. (2004). Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 15: 1163–1166, https://doi.org/10.1097/00001756-200405190-00016.Search in Google Scholar

Juurlink, B.H.J., Thorburne, S.K., and Hertz, L. (1998). Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22: 371–378, https://doi.org/10.1002/(sici)1098-1136(199804)22:4<371::aid-glia6>3.0.co;2-6.10.1002/(SICI)1098-1136(199804)22:4<371::AID-GLIA6>3.0.CO;2-6Search in Google Scholar

Kananen, L., Surakka, I., Pirkola, S., Suvisaari, J., Lönnqvist, J., Peltonen, L., Ripatti, S., and Hovatta, I. (2010). Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PloS One 5: 10826, https://doi.org/10.1371/journal.pone.0010826.Search in Google Scholar

Kanoh, J. (2017). Telomeres and subtelomeres: new insights into the chromatin structures and functions of chromosome ends. Genes Genet. Syst. 92: 105, https://doi.org/10.1266/ggs.17-10001.Search in Google Scholar

Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy, G.M., and Schatzberg, A.F. (2017). HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatr. 22: 527–536, https://doi.org/10.1038/mp.2016.120.Search in Google Scholar

Kiecolt-Glaser, J.K., Epel, E.S., Belury, M.A., Andridge, R., Lin, J., Glaser, R., Malarkey, W.B., Hwang, B.S., and Blackburn, E. (2013). Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav. Immun. 28: 16–24, https://doi.org/10.1016/j.bbi.2012.09.004.Search in Google Scholar

Kiecolt-Glaser, J.K., Gouin, J.P., Weng, N.P., Malarkey, W.B., Beversdorf, D.Q., and Glaser, R. (2011). Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom. Med. 73: 16–22, https://doi.org/10.1097/psy.0b013e31820573b6.Search in Google Scholar

Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I.W., and Moffitt, T.E. (2006). MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol. Psychiatr. 11: 903–913, https://doi.org/10.1038/sj.mp.4001851.Search in Google Scholar PubMed

Kinser, P.A. and Lyon, D.E. (2013). Major depressive disorder and measures of cellular aging: an integrative review. Nurs. Res. Pract. 2013: 469070, https://doi.org/10.1155/2013/469070.Search in Google Scholar PubMed PubMed Central

Kopczak, A., Stalla, G.K., Uhr, M., Lucae, S., Hennings, J., Ising, M., Holsboer, F., and Kloiber, S. (2015). IGF-I in major depression and antidepressant treatment response. Eur. Neuropsychopharmacol 25: 864–872, https://doi.org/10.1016/j.euroneuro.2014.12.013.Search in Google Scholar PubMed

Kordinas, V., Ioannidis, A., and Chatzipanagiotou, S. (2016). The telomere/telomerase system in chronic inflammatory diseases. Cause or effect? Genes 7: 60, https://doi.org/10.3390/genes7090060.Search in Google Scholar PubMed PubMed Central

Kronenberg, G., Uhlemann, R., Schöner, J., Wegner, S., Boujon, V., Deigendesch, N., Endres, M., and Gertz, K. (2017). Repression of telomere-associated genes by microglia activation in neuropsychiatric disease. Eur. Arch. Psychiatr. Clin. Neurosci. 267: 473–477, https://doi.org/10.1007/s00406-016-0750-1.Search in Google Scholar PubMed PubMed Central

Labandeira-Garcia, J.L., Costa-Besada, M.A., Labandeira, C.M., Villar-Cheda, B., and Rodríguez-Perez, A.I. (2017). Insulin-like growth factor-1 and neuroinflammation. Front. Aging Neurosci. 9: 365, https://doi.org/10.3389/fnagi.2017.00365.Search in Google Scholar PubMed PubMed Central

Lange, T. (2018). Shelterin-mediated telomere protection. Annu. Rev. Genet. 52: 223–247, https://doi.org/10.1146/annurev-genet-032918-021921.Search in Google Scholar PubMed

Laurent, H.K., Duncan, L.G., Lightcap, A., and Khan, F. (2017). Mindful parenting predicts mothers’ and infants’ hypothalamic-pituitary-adrenal activity during a dyadic stressor. Dev. Psychol. 53: 417–424, https://doi.org/10.1037/dev0000258.Search in Google Scholar PubMed

Lebedeva, A., Sundström, A., Lindgren, L., Stomby, A., Aarsland, D., Westman, E., Winblad, B., Olsson, T., and Nyberg, L. (2018). Longitudinal relationships among depressive symptoms, cortisol, and brain atrophy in the neocortex and the hippocampus. Acta Psychiatr. Scand. 137: 491–502, https://doi.org/10.1111/acps.12860.Search in Google Scholar PubMed

Lee, B.-H. and Kim, Y.-K. (2010). The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatr. Invest. 7: 231–235, https://doi.org/10.4306/pi.2010.7.4.231.Search in Google Scholar PubMed PubMed Central

Lee, M., Hong, S., Kim, N., Shin, K.S., and Kang, S.J. (2015). Tricyclic antidepressants amitriptyline and desipramine induced neurotoxicity associated with Parkinson’s disease. Mol. Cell. 38: 734–740, https://doi.org/10.14348/molcells.2015.0131.Search in Google Scholar

Lettieri-Barbato, D., Giovannetti, E., and Aquilano, K. (2016). Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging 8: 3341–3355, https://doi.org/10.18632/aging.101122.Search in Google Scholar

Levada, O.A. and Troyan, A.S. (2017). Insulin-like growth factor-1: a possible marker for emotional and cognitive disturbances, and treatment effectiveness in major depressive disorder. Ann. Gen. Psychiatr. 16: 38, https://doi.org/10.1186/s12991-017-0161-3.Search in Google Scholar

Levada, O.A. and Troyan, A.S. (2020). Major depressive disorder and accelerated aging from a peripheral IGF-1 overexpression perspective. Med. Hypotheses 138: 109610, https://doi.org/10.1016/j.mehy.2020.109610.Search in Google Scholar

Li, P., Liu, T., Liu, J., Zhang, Q., Lou, F., Kong, F., Cheng, G., Björkholm, M., Zheng, C., and Xu, D. (2014). Promoter polymorphism in the serotonin transporter (5-HTT) gene is significantly associated with leukocyte telomere length in han Chinese. PloS One 9: e94442, https://doi.org/10.1371/journal.pone.0094442.Search in Google Scholar

Li, Q. (2006). Cellular and molecular alterations in mice with deficient and reduced serotonin transporters. Mol. Neurobiol. 34: 51–65, https://doi.org/10.1385/mn:34:1:51.10.1385/MN:34:1:51Search in Google Scholar

Li, Y., Luikart, B.W., Birnbaum, S., Chen, J., Kwon, C.-H., Kernie, S.G., Bassel-Duby, R., and Parada, L.F. (2008). TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59: 399–412, https://doi.org/10.1016/j.neuron.2008.06.023.Search in Google Scholar

Liao, Y., Xie, B., Zhang, H., He, Q., Guo, L., Subramaniapillai, M., Fan, B., Lu, C., and Mclntyer, R.S. (2019). Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl. Psychiatry 9: 1–9, https://doi.org/10.1038/s41398-019-0515-5.Search in Google Scholar

Lichtenwalner, R.J., Forbes, M.E., Bennett, S.A., Lynch, C.D., Sonntag, W.E., and Riddle, D.R. (2001). Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107: 603–613, https://doi.org/10.1016/s0306-4522(01)00378-5.Search in Google Scholar

Liew, C.C., Ma, J., Tang, H.C., Zheng, R., and Dempsey, A.A. (2006). The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med. 147: 126–132, https://doi.org/10.1016/j.lab.2005.10.005.Search in Google Scholar

Lin, P.Y., Huang, Y.C., and Hung, C.F. (2016). Shortened telomere length in patients with depression: a meta-analytic study. J. Psychiatr. Res. 76: 84–93, https://doi.org/10.1016/j.jpsychires.2016.01.015.Search in Google Scholar PubMed

Lindqvist, D., Epel, E.S., Mellon, S.H., Penninx, B.W., Révész, D., Verhoeven, J.E., Reus, V.I., Lin, J., Mahan, L., Hough, C.M., et al.. (2015). Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci. Biobehav. Rev. 55: 333–364, https://doi.org/10.1016/j.neubiorev.2015.05.007.Search in Google Scholar PubMed PubMed Central

Liu, M.Y., Nemes, A., and Zhou, Q.G. (2018). The emerging roles for telomerase in the central nervous system. Front. Mol. Neurosci. 11: 160, https://doi.org/10.3389/fnmol.2018.00160.Search in Google Scholar PubMed PubMed Central

Liu, Z., Han, R., Zhu, W., Xiu, J., Shen, Y., and Xu, Q. (2020). Inverse changes in telomere length between the blood and brain in depressive-like mice. J. Affect. Disord. 273: 453–461, https://doi.org/10.1016/j.jad.2020.01.089.Search in Google Scholar PubMed

Lobanova, A., She, R., Pieraut, S., Clapp, C., Maximov, A., and Denchi, E.L. (2017). Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons. Genes Dev. 31: 639–647, https://doi.org/10.1101/gad.295402.116.Search in Google Scholar PubMed PubMed Central

Lokanathan, Y., Omar, N., Puz, N.N., Saim, A., and Idrus, R. (2016). Recent updates in neuroprotective and neuroregenerative potential of Centella asiatica. Malays. J. Med. Sci. 23: 4–14.Search in Google Scholar

López-Maury, L., Marguerat, S., and Bähler, J. (2008). Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9: 583–593, https://doi.org/10.1038/nrg2398.Search in Google Scholar PubMed

Lu, N.Z. and Cidlowski, J.A. (2006). Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol. 16: 301–307, https://doi.org/10.1016/j.tcb.2006.04.005.Search in Google Scholar PubMed

Luca, M., Luca, A., and Calandra, C. (2013). Accelerated aging in major depression: the role of nitro-oxidative stress. Oxid. Med. Cell. Longev. 2013: 230797, https://doi.org/10.1155/2013/230797.Search in Google Scholar PubMed PubMed Central

Lucassen, P.J., Heine, V.M., Muller, M.B., van der Beek, E.M., Wiegant, V.M., De Kloet, E.R., Joels, M., Fuchs, E., Swaab, D.F., and Czeh, B. (2006). Stress, depression and hippocampal apoptosis. CNS Neurol. Disord. – Drug Targets 5: 531–546, https://doi.org/10.2174/187152706778559273.Search in Google Scholar PubMed

Lung, F.W., Chen, N.C., and Shu, B.C. (2007). Genetic pathway of major depressive disorder in shortening telomeric length. Psychiatr. Genet. 17: 195–199, https://doi.org/10.1097/ypg.0b013e32808374f6.Search in Google Scholar PubMed

Lung, F.W., Fan, P.L., Chen, N.C., and Shu, B.C. (2005). Telomeric length varies with age and polymorphisms of the MAOA gene promoter in peripheral blood cells obtained from a community in Taiwan. Psychiatr. Genet. 15: 31–35, https://doi.org/10.1097/00041444-200503000-00006.Search in Google Scholar

Lung, F.-W., Tzeng, D.-S., Huang, M.-F., and Lee, M.-B. (2011). Association of the MAOA promoter uVNTR polymorphism with suicide attempts in patients with major depressive disorder. BMC Med. Genet. 12: 74, https://doi.org/10.1186/1471-2350-12-74.Search in Google Scholar

Lyndon, B., Parker, G., Morris, G., Das, P., Outhred, T., Hamilton, A., Bassett, D., Baune, B.T., Berk, M., Boyce, P., et al.. (2017). Is atypical depression simply a typical depression with unusual symptoms? Aust. N. Z. J. Psychiatr. 51: 868–871, https://doi.org/10.1177/0004867417721020.Search in Google Scholar

Maguire, D., Neytchev, O., Talwar, D., McMillan, D., and Shiels, P.G. (2018). Telomere homeostasis: interplay with magnesium. Int. J. Mol. Sci. 19: 157, https://doi.org/10.3390/ijms19010157.Search in Google Scholar

Maher, F.O., Nolan, Y., and Lynch, M.A. (2005). Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiol. Aging 26: 717–728, https://doi.org/10.1016/j.neurobiolaging.2004.07.002.Search in Google Scholar

Malhi, G.S. and Mann, J.J. (2018). Depression. Lancet 392: 2299–2312, https://doi.org/10.1016/s0140-6736(18)31948-2.Search in Google Scholar

Mamdani, F., Rollins, B., Morgan, L., Myers, R.M., Barchas, J.D., Schatzberg, A.F., Watson, S.J., Akil, H., Potkin, S.G., Bunney, W.E., et al.. (2015). Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder. Transl. Psychiatry 5: e636, https://doi.org/10.1038/tp.2015.134.Search in Google Scholar PubMed PubMed Central

Manchia, M., Paribello, P., Arzedi, C., Bocchetta, A., Caria, P., Cocco, C., Congiu, D., Cossu, E., Dettori, T., Frau, D.V., et al.. (2020). A multidisciplinary approach to mental illness: do inflammation, telomere length and microbiota form a loop? A protocol for a cross-sectional study on the complex relationship between inflammation, telomere length, gut microbiota and psychiatric disorders. BMJ Open 10: e032513, https://doi.org/10.1136/bmjopen-2019-032513.Search in Google Scholar PubMed PubMed Central

Manoliu, A., Bosch, O.G., Brakowski, J., Brühl, A.B., and Seifritz, E. (2018). The potential impact of biochemical mediators on telomere attrition in major depressive disorder and implications for future study designs: a narrative review. J. Affect. Disord. 225: 630–646, https://doi.org/10.1016/j.jad.2017.08.022.Search in Google Scholar PubMed

Maripuu, M., Wikgren, M., Karling, P., Adolfsson, R., and Norrback, K.F. (2014). Relative hypo- and hypercortisolism are both associated with depression and lower quality of life in bipolar disorder: a cross-sectional study. PloS One 9: e98682, https://doi.org/10.1371/journal.pone.0098682.Search in Google Scholar PubMed PubMed Central

Martino, M., Rocchi, G., Escelsior, A., Contini, P., Colicchio, S., de Berardis, D., Amore, M., Fornaro, P., and Fornaro, M. (2013). NGF serum levels variations in major depressed patients receiving duloxetine. Psychoneuroendocrinology 38: 1824–1828, https://doi.org/10.1016/j.psyneuen.2013.02.009.Search in Google Scholar

Martinowich, K. and Lu, B. (2008). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33: 73–83, https://doi.org/10.1038/sj.npp.1301571.Search in Google Scholar

Martinowich, K., Manji, H., and Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nat. Neurosci. 10: 1089–1093, https://doi.org/10.1038/nn1971.Search in Google Scholar

Martinsson, L., Wei, Y., Xu, D., Melas, P.A., Mathé, A.A., Schalling, M., Lavebratt, C., and Backlund, L. (2013). Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl. Psychiatry 3: e261, https://doi.org/10.1038/tp.2013.37.Search in Google Scholar

Masutomi, K., Possemato, R., Wong, J.M.Y., Currier, J.L., Tothova, Z., Manola, J.B., Ganesan, S., Lansdorp, P.M., Collins, K., and Hahn, W.C. (2005). The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl. Acad. Sci. U. S. A. 102: 8222–8227, https://doi.org/10.1073/pnas.0503095102.Search in Google Scholar

Mattson, M.P., Fu, W., and Zhang, P. (2001). Emerging roles for telomerase in regulating cell differentiation and survival: a neuroscientist’s perspective. Mech. Ageing Dev. 122: 659–671, https://doi.org/10.1016/s0047-6374(01)00221-4.Search in Google Scholar

Mattson, M.P. and Klapper, W. (2001). Emerging roles for telomerase in neuronal development and apoptosis. J. Neurosci. Res. 63: 1–9, https://doi.org/10.1002/1097-4547(20010101)63:1<1::aid-jnr1>3.0.co;2-i.10.1002/1097-4547(20010101)63:1<1::AID-JNR1>3.0.CO;2-ISearch in Google Scholar

Mayer, S.E., Prather, A.A., Puterman, E., Lin, J., Arenander, J., Coccia, M., Shields, G.S., Slavich, G.M., and Epel, E.S. (2019). Cumulative lifetime stress exposure and leukocyte telomere length attrition: the unique role of stressor duration and exposure timing. Psychoneuroendocrinology 104: 210–218, https://doi.org/10.1016/j.psyneuen.2019.03.002.Search in Google Scholar

Mitschelen, M., Yan, H., Farley, J.A., Warrington, J.P., Han, S., Hereñú, C.B., Csiszar, A., Ungvari, Z., Bailey-Downs, L.C., Bass, C.E., et al.. (2011). Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience 185: 50–60, https://doi.org/10.1016/j.neuroscience.2011.04.032.Search in Google Scholar

Monaghan, P. (2014). Organismal stress, telomeres and life histories. J. Exp. Biol. 217: 57–66, https://doi.org/10.1242/jeb.090043.Search in Google Scholar

Morel, G.R., León, M.L., Uriarte, M., Reggiani, P.C., and Goya, R.G. (2017). Therapeutic potential of IGF-I on hippocampal neurogenesis and function during aging. Neurogenesis 4: e1259709, https://doi.org/10.1080/23262133.2016.1259709.Search in Google Scholar PubMed PubMed Central

Muneer, A. and Minhas, F.A. (2019). Telomere biology in mood disorders: an updated, comprehensive review of the literature. Clin. Psychopharmacol. Neurosci. 17: 343–363, https://doi.org/10.9758/cpn.2019.17.3.343.Search in Google Scholar PubMed PubMed Central

Mytych, J., Solek, P., Tabecka-Lonczynska, A., and Koziorowski, M. (2019). Klotho-mediated changes in shelterin complex promote cytotoxic autophagy and apoptosis in amitriptyline-treated hippocampal neuronal cells. Mol. Neurobiol. 56: 6952–6963, https://doi.org/10.1007/s12035-019-1575-5.Search in Google Scholar PubMed

Needham, B.L., Mezuk, B., Bareis, N., Lin, J., Blackburn, E.H., and Epel, E.S. (2015). Depression, anxiety and telomere length in young adults: evidence from the National Health and Nutrition Examination Survey. Mol. Psychiatr. 20: 520–528, https://doi.org/10.1038/mp.2014.89.Search in Google Scholar PubMed PubMed Central

Nelson, B.W., Allen, N.B., and Laurent, H. (2018). Infant HPA axis as a potential mechanism linking maternal mental health and infant telomere length. Psychoneuroendocrinology 88: 38–46, https://doi.org/10.1016/j.psyneuen.2017.11.008.Search in Google Scholar PubMed

Nielsen, F. (2018). Magnesium deficiency and increased inflammation: current perspectives. J. Inflamm. Res. 11: 25–34, https://doi.org/10.2147/jir.s136742.Search in Google Scholar

Niraula, A., Wang, Y., Godbout, J.P., and Sheridan, J.F. (2018). Corticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expression. J. Neurosci. 38: 2328–2340, https://doi.org/10.1523/jneurosci.2568-17.2018.Search in Google Scholar

Nunes, P.V., Nascimento, C.F., Kim, H.K., Andreazza, A.C., Brentani, H.P., Suemoto, C.K., Leite, R., Ferretti-Rebustini, R., Pasqualucci, C.A., Nitrini, R., et al.. (2018). Low brain-derived neurotrophic factor levels in post-mortem brains of older adults with depression and dementia in a large clinicopathological sample. J. Affect. Disord. 241: 176–181, https://doi.org/10.1016/j.jad.2018.08.025.Search in Google Scholar PubMed

O'Donovan, A., Epel, E., Lin, J., Wolkowitz, O., Cohen, B., Maguen, S., Metzler, T., Lenoci, M., Blackburn, E., and Neylan, T.C. (2011). Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol. Psychiatr. 70: 465–471, https://doi.org/10.1016/j.biopsych.2011.01.035.Search in Google Scholar PubMed PubMed Central

Olff, M., Frijling, J.L., Kubzansky, L.D., Bradley, B., Ellenbogen, M.A., Cardoso, C., Bartz, J.A., Yee, J.R., and van Zuiden, M. (2013). The role of oxytocin in social bonding, stress regulation and mental health: an update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 38: 1883–1894, https://doi.org/10.1016/j.psyneuen.2013.06.019.Search in Google Scholar PubMed

Ozturk, S. (2015). Telomerase activity and telomere length in male germ cells. Biol. Reprod. 92: 53, https://doi.org/10.1095/biolreprod.114.124008.Search in Google Scholar PubMed

Pace, T.W.W., Hu, F., and Miller, A.H. (2007). Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav. Immun. 21: 9–19, https://doi.org/10.1016/j.bbi.2006.08.009.Search in Google Scholar PubMed PubMed Central

Palm, W. and de Lange, T. (2008). How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42: 301–334, https://doi.org/10.1146/annurev.genet.41.110306.130350.Search in Google Scholar PubMed

Pan, L., Penney, J., and Tsai, L.H. (2014). Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J. Mol. Biol. 426: 3376–3388, https://doi.org/10.1016/j.jmb.2014.08.001.Search in Google Scholar PubMed PubMed Central

Park, S.-E., Lawson, M., Dantzer, R., Kelley, K.W., and McCusker, R.H. (2011). Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. J. Neuroinflammation 8: 179, https://doi.org/10.1186/1742-2094-8-179.Search in Google Scholar PubMed PubMed Central

Patrick, M. and Weng, N. (2019). Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cell. Immunol. 345: 103989, https://doi.org/10.1016/j.cellimm.2019.103989.Search in Google Scholar PubMed PubMed Central

Penninx, B.W.J.H. and Lange, S.M.M. (2018). Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues Clin. Neurosci. 20: 63–73, https://doi.org/10.31887/dcns.2018.20.1/bpenninx.Search in Google Scholar

Perini, S., Silla, L.M.R., and Andrade, F.M. (2008). Telomerase in hematopoietic stem cells. Rev. Bras. Hematol. Hemoter. 30: 47–53, https://doi.org/10.1590/s1516-84842008000100012.Search in Google Scholar

Phillips, N.K., Hammen, C.L., Brennan, P.A., Najman, J.M., and Bor, W. (2005). Early adversity and the prospective prediction of depressive and anxiety disorders in adolescents. J. Abnorm. Child Psychol. 33: 13–24, https://doi.org/10.1007/s10802-005-0930-3.Search in Google Scholar PubMed

Player, M.J., Taylor, J.L., Weickert, C.S., Alonzo, A., Sachdev, P., Martin, D., Mitchell, P.B., and Loo, C.K. (2013). Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 38: 2101–2108, https://doi.org/10.1038/npp.2013.126.Search in Google Scholar PubMed PubMed Central

Price, L.H., Kao, H.T., Burgers, D.E., Carpenter, L.L., and Tyrka, A.R. (2013). Telomeres and early-life stress: an overview. Biol. Psychiatr. 73: 15–23, https://doi.org/10.1016/j.biopsych.2012.06.025.Search in Google Scholar PubMed PubMed Central

Pruessner, M., Hellhammer, D.H., Pruessner, J.C., and Lupien, S.J. (2003). Self-reported depressive symptoms and stress levels in healthy young men: associations with the cortisol response to awakening. Psychosom. Med. 65: 92–99, https://doi.org/10.1097/01.psy.0000040950.22044.10.Search in Google Scholar PubMed

Puterman, E., Epel, E.S., Lin, J., Blackburn, E.H., Gross, J.J., Whooley, M.A., and Cohen, B.E. (2013). Multisystem resiliency moderates the major depression–telomere length association: findings from the Heart and Soul Study. Brain Behav. Immun. 33: 65–73, https://doi.org/10.1016/j.bbi.2013.05.008.Search in Google Scholar PubMed PubMed Central

Puterman, E., Lin, J., Blackburn, E., O’Donovan, A., Adler, N., and Epel, E. (2010). The power of exercise: buffering the effect of chronic stress on telomere length. PloS One 5: e10837, https://doi.org/10.1371/journal.pone.0010837.Search in Google Scholar PubMed PubMed Central

Puzik, A., Rupp, J., Tröger, B., Göpel, W., Herting, E., and Härtel, C. (2012). Insulin-like growth factor-I regulates the neonatal immune response in infection and maturation by suppression of IFN-γ. Cytokine 60: 369–376, https://doi.org/10.1016/j.cyto.2012.07.025.Search in Google Scholar PubMed

Rawji, K.S., Mishra, M.K., Michaels, N.J., Rivest, S., Stys, P.K., and Yong, V.W. (2016). Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139: 653–661, https://doi.org/10.1093/brain/awv395.Search in Google Scholar PubMed PubMed Central

Rich-Edwards, J.W., Spiegelman, D., Lividoti Hibert, E.N., Jun, H.J., Todd, T.J., Kawachi, I., and Wright, R.J. (2010). Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am. J. Prev. Med. 39: 529–536, https://doi.org/10.1016/j.amepre.2010.09.007.Search in Google Scholar PubMed PubMed Central

Rius-Ottenheim, N., Houben, J.M.J., Kromhout, D., Kafatos, A., van der Mast, R.C., Zitman, F.G., Geleijnse, J.M., Hageman, G.J., and Giltay, E.J. (2012). Telomere length and mental well-being in elderly men from The Netherlands and Greece. Behav. Genet. 42: 278–286, https://doi.org/10.1007/s10519-011-9498-6.Search in Google Scholar PubMed PubMed Central

Robakis, T.K., Zhang, S., Rasgon, N.L., Li, T., Wang, T., Roth, M.C., Humphreys, K.L., Gotlib, I.H., Ho, M., Khechaduri, A., et al.. (2020). Epigenetic signatures of attachment insecurity and childhood adversity provide evidence for role transition in the pathogenesis of perinatal depression. Transl. Psychiatry 10: 48, https://doi.org/10.1038/s41398-020-0703-3.Search in Google Scholar PubMed PubMed Central

Romagosa, C., Simonetti, S., López-Vicente, L., Mazo, A., Lleonart, M.E., Castellvi, J., and Ramon y Cajal, S. (2011). p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30: 2087–2097, https://doi.org/10.1038/onc.2010.614.Search in Google Scholar PubMed

Rubin, C.I. and Atweh, G.F. (2004). The role of stathmin in the regulation of the cell cycle. J. Cell. Biochem. 93: 242–250, https://doi.org/10.1002/jcb.20187.Search in Google Scholar PubMed

Sales, J.M., DiClemente, R.J., Brody, G.H., Philibert, R.A., and Rose, E. (2014). Interaction between 5-HTTLPR polymorphism and abuse history on adolescent African-American females’ condom use behavior following participation in an HIV prevention intervention. Prev. Sci. 15: 257–267, https://doi.org/10.1007/s11121-013-0378-6.Search in Google Scholar PubMed PubMed Central

Salpea, K.D., Talmud, P.J., Cooper, J.A., Maubaret, C.G., Stephens, J.W., Abelak, K., and Humphries, S.E. (2010). Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis 209: 42–50, https://doi.org/10.1016/j.atherosclerosis.2009.09.070.Search in Google Scholar PubMed PubMed Central

Scheuer, S., Wiggert, N., Brückl, T.M., Awaloff, Y., Uhr, M., Lucae, S., Kloiber, S., Holsboer, F., Ising, M., and Wilhelm, F.H. (2018). Childhood abuse and depression in adulthood: the mediating role of allostatic load. Psychoneuroendocrinology 94: 134–142, https://doi.org/10.1016/j.psyneuen.2018.04.020.Search in Google Scholar PubMed

Scott, K.M., Smith, D.A.R., and Ellis, P.M. (2012). A population study of childhood maltreatment and asthma diagnosis: differential associations between child protection database versus retrospective self-reported data. Psychosom. Med. 74: 817–823, https://doi.org/10.1097/psy.0b013e3182648de4.Search in Google Scholar PubMed

Shalev, I., Moffitt, T.E., Braithwaite, A.W., Danese, A., Fleming, N.I., Goldman-Mellor, S., Harrington, H.L., Houts, R.M., Israel, S., Poulton, R., et al.. (2014). Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol. Psychiatr. 19: 1163–1170, https://doi.org/10.1038/mp.2013.183.Search in Google Scholar PubMed PubMed Central

Shin, D., Shin, J., and Lee, K.W. (2019). Effects of inflammation and depression on telomere length in young adults in the United States. J. Clin. Med. 8: 711, https://doi.org/10.3390/jcm8050711.Search in Google Scholar PubMed PubMed Central

Shu, Y., Wu, M., Yang, S., Wang, Y., and Li, H. (2020). Association of dietary selenium intake with telomere length in middle-aged and older adults. Clin. Nutr. 39: 3086–3091, https://doi.org/10.1016/j.clnu.2020.01.014.Search in Google Scholar PubMed

Sierra, A., Gottfried‐Blackmore, A.C., McEwen, B.S., and Bulloch, K. (2007). Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55: 412–424, https://doi.org/10.1002/glia.20468.Search in Google Scholar PubMed

Simon, N.M., Smoller, J.W., McNamara, K.L., Maser, R.S., Zalta, A.K., Pollack, M.H., Nierenberg, A.A., Fava, M., and Wong, K.K. (2006). Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol. Psychiatr. 60: 432–435, https://doi.org/10.1016/j.biopsych.2006.02.004.Search in Google Scholar PubMed

Smearman, E.L., Winiarski, D.A., Brennan, P.A., Najman, J., and Johnson, K.C. (2015). Social stress and the oxytocin receptor gene interact to predict antisocial behavior in an at-risk cohort. Dev. Psychopathol. 27: 309–318, https://doi.org/10.1017/s0954579414000649.Search in Google Scholar PubMed PubMed Central

Smearman, E.L., Yu, T., and Brody, G.H. (2016). Variation in the oxytocin receptor gene moderates the protective effects of a family-based prevention program on telomere length. Brain Behav. 6: e00423, https://doi.org/10.1002/brb3.423.Search in Google Scholar PubMed PubMed Central

Smith, E.M., Pendlebury, D.F., and Nandakumar, J. (2020). Structural biology of telomeres and telomerase. Cell. Mol. Life Sci. 77: 61–79, https://doi.org/10.1007/s00018-019-03369-x.Search in Google Scholar PubMed PubMed Central

Smith, J.A., Park, S., Krause, J.S., and Banik, N.L. (2013). Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem. Int. 62: 764–775, https://doi.org/10.1016/j.neuint.2013.02.013.Search in Google Scholar PubMed PubMed Central

Soeiro-de-Souza, M.G., Teixeira, A.L., Mateo, E.C., Zanetti, M.V., Rodrigues, F.G., de Paula, V.J., Bezerra, J.F., Moreno, R.A., Gattaz, W.F., and Machado-Vieira, R. (2014). Leukocyte telomerase activity and antidepressant efficacy in bipolar disorder. Eur. Neuropsychopharmacol 24: 1139–1143, https://doi.org/10.1016/j.euroneuro.2014.03.005.Search in Google Scholar PubMed

Solek, P., Koszla, O., Mytych, J., Badura, J., Chelminiak, Z., Cuprys, M., Fraczek, J., Tabecka-Lonczynska, A., and Koziorowski, M. (2019). Neuronal life or death linked to depression treatment: the interplay between drugs and their stress-related outcomes relate to single or combined drug therapies. Apoptosis 24: 773–784, https://doi.org/10.1007/s10495-019-01557-5.Search in Google Scholar PubMed PubMed Central

Souza-Monteiro, J.R., Arrifano, G.P.F., Queiroz, A.I.D.G., Mello, B.S.F., Custódio, C.S., Macêdo, D.S., Hamoy, M., Paraense, R.S.O., Bittencourt, L.O., Lima, R.R., et al.. (2019). Antidepressant and antiaging effects of açaí (Euterpe oleracea mart.) in mice. Oxid. Med. Cell. Longev. 2019: 3614960.10.1155/2019/3614960Search in Google Scholar PubMed PubMed Central

Speck-Hernández, C.A., Ojeda, D.A., Castro-Vega, L.J., and Forero, D.A. (2015). Relative telomere length is associated with a functional polymorphism in the monoamine oxidase A gene in a South American sample. J. Genet. 94: 305–308, https://doi.org/10.1007/s12041-015-0513-1.Search in Google Scholar PubMed

Squassina, A., Pisanu, C., Corbett, N., and Alda, M. (2017). Telomere length in bipolar disorder and lithium response. Eur. Neuropsychopharmacol 27: 560–567, https://doi.org/10.1016/j.euroneuro.2015.10.008.Search in Google Scholar PubMed

Starkweather, A.R., Alhaeeri, A.A., Montpetit, A., Brumelle, J., Filler, K., Montpetit, M., Mohanraj, L., Lyon, D.E., and Jackson-Cook, C.K. (2014). An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs. Res. 63: 36–50, https://doi.org/10.1097/nnr.0000000000000009.Search in Google Scholar

Starr, J.M., Shiels, P.G., Harris, S.E., Pattie, A., Pearce, M.S., Relton, C.L., and Deary, I.J. (2008). Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey. Mech. Ageing Dev. 129: 745–751, https://doi.org/10.1016/j.mad.2008.09.020.Search in Google Scholar

Szczęsny, E., Ślusarczyk, J., Głombik, K., Budziszewska, B., Kubera, M., Lasoń, W., and Basta-Kaim, A. (2013). Possible contribution of IGF-1 to depressive disorder. Pharmacol. Rep. 65: 1622–1631, https://doi.org/10.1016/s1734-1140(13)71523-8.Search in Google Scholar

Szebeni, A., Szebeni, K., DiPeri, T., Chandley, M.J., Crawford, J.D., Stockmeier, C.A., and Ordway, G.A. (2014). Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. Int. J. Neuropsychopharmacol. 17: 1579–1589, https://doi.org/10.1017/s1461145714000698.Search in Google Scholar PubMed

Teyssier, J.R., Chauvet-Gelinier, J.C., Ragot, S., and Bonin, B. (2012). Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores. PloS One 7: e49677, https://doi.org/10.1371/journal.pone.0049677.Search in Google Scholar PubMed PubMed Central

Thomason, M.E., Henry, M.L., Paul Hamilton, J., Joormann, J., Pine, D.S., Ernst, M., Goldman, D., Mogg, K., Bradley, B.P., Britton, J.C., et al.. (2010). Neural and behavioral responses to threatening emotion faces in children as a function of the short allele of the serotonin transporter gene. Biol. Psychol. 85: 38–44, https://doi.org/10.1016/j.biopsycho.2010.04.009.Search in Google Scholar PubMed PubMed Central

Tolahunase, M.R., Sagar, R., Faiq, M., and Dada, R. (2018). Yoga- and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: a randomized controlled trial. Restor. Neurol. Neurosci. 36: 423–442, https://doi.org/10.3233/rnn-170810.Search in Google Scholar PubMed

Tsoukalas, D., Fragkiadaki, P., Docea, A.O., Alegakis, A.K., Sarandi, E., Thanasoula, M., Spandidos, D.A., Tsatsakis, A., Razgonova, M.P., and Calina, D. (2019). Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 20: 3701–3708, https://doi.org/10.3892/mmr.2019.10614.Search in Google Scholar PubMed PubMed Central

Tu, K.-Y., Wu, M.-K., Chen, Y.-W., Lin, P.-Y., Wang, H.-Y., Wu, C.-K., and Tseng, P.-T. (2016). Significantly higher peripheral insulin-like growth factor-1 levels in patients with major depressive disorder or bipolar disorder than in healthy controls: a meta-analysis and review under guideline of PRISMA. Medicine 95: e2411, https://doi.org/10.1097/md.0000000000002411.Search in Google Scholar

Uchida, S. and Shumyatsky, G.P. (2015). Deceivingly dynamic: learning-dependent changes in stathmin and microtubules. Neurobiol. Learn. Mem. 124: 52–61, https://doi.org/10.1016/j.nlm.2015.07.011.Search in Google Scholar PubMed PubMed Central

Valsamakis, G., Chrousos, G., and Mastorakos, G. (2019). Stress, female reproduction and pregnancy. Psychoneuroendocrinology 100: 48–57, https://doi.org/10.1016/j.psyneuen.2018.09.031.Search in Google Scholar PubMed

Vartak, S., Deshpande, A., and Barve, S. (2014). Reduction in the telomere length in human T-lymphocytes on exposure to cortisol. Curr. Res. Med. Med. Sci. 4: 20–25.Search in Google Scholar

Verhoeven, J.E., Révész, D., Epel, E.S., Lin, J., Wolkowitz, O.M., and Penninx, B.W. (2014a). Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol. Psychiatr. 19: 895–901, https://doi.org/10.1038/mp.2013.151.Search in Google Scholar

Verhoeven, J.E., Révész, D., Wolkowitz, O.M., and Penninx, B.W.J.H. (2014b). Cellular aging in depression: permanent imprint or reversible process? An overview of the current evidence, mechanistic pathways, and targets for interventions. Bioessays 36: 968–978, https://doi.org/10.1002/bies.201400068.Search in Google Scholar

Verhoeven, J.E., van Oppen, P., Révész, D., Wolkowitz, O.M., and Penninx, B.W. (2016). Depressive and anxiety disorders showing robust, but non-dynamic, six-year longitudinal association with short leukocyte telomere length. Am. J. Psychiatr. 173: 617–624, https://doi.org/10.1176/appi.ajp.2015.15070887.Search in Google Scholar

Von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends Biochem. Sci. 27: 339–344, https://doi.org/10.1016/s0968-0004(02)02110-2.Search in Google Scholar

Vreeburg, S.A., Hoogendijk, W.J.G., van Pelt, J., Derijk, R.H., Verhagen, J.C.M., van Dyck, R., Smit, J.H., Zitman, F.G., and Penninx, B.W.J.H. (2009). Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch. Gen. Psychiatr. 66: 617–626, https://doi.org/10.1001/archgenpsychiatry.2009.50.Search in Google Scholar PubMed

Wang, J., Um, P., Dickerman, B.A., and Liu, J. (2018). Zinc, magnesium, selenium and depression: a review of the evidence, potential mechanisms and implications. Nutrients 10: 584, https://doi.org/10.3390/nu10050584.Search in Google Scholar PubMed PubMed Central

Warner-Schmidt, J.L. and Duman, R.S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16: 239–249, https://doi.org/10.1002/hipo.20156.Search in Google Scholar PubMed

Watfa, G., Dragonas, C., Brosche, T., Dittrich, R., Sieber, C.C., Alecu, C., Benetos, A., and Nzietchueng, R. (2011). Study of telomere length and different markers of oxidative stress in patients with Parkinson’s disease. J. Nutr. Health Aging 15: 277–281, https://doi.org/10.1007/s12603-010-0275-7.Search in Google Scholar PubMed

Wei, Y.B., Backlund, L., Wegener, G., Mathé, A.A., and Lavebratt, C. (2015). Telomerase dysregulation in the Hippocampus of a rat model of depression: normalization by lithium. Int. J. Neuropsychopharmacol. 18: pyv002, https://doi.org/10.1093/ijnp/pyv002.Search in Google Scholar PubMed PubMed Central

Weinhold, B. (2006). Epigenetics: the science of change. Environ. Health Perspect. 114: 160–167, https://doi.org/10.1289/ehp.114-a160.Search in Google Scholar PubMed PubMed Central

Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav. Immun. 19: 296–308, https://doi.org/10.1016/j.bbi.2004.09.006.Search in Google Scholar PubMed

Werner, C., Hanhoun, M., Widmann, T., Kazakov, A., Semenov, A., Pöss, J., Bauersachs, J., Thum, T., Pfreundschuh, M., Müller, P., et al.. (2008). Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J. Am. Coll. Cardiol. 52: 470–482, https://doi.org/10.1016/j.jacc.2008.04.034.Search in Google Scholar PubMed

Wikgren, M., Maripuu, M., Karlsson, T., Nordfjäll, K., Bergdahl, J., Hultdin, J., Del-Favero, J., Roos, G., Nilsson, L.G., Adolfsson, R., et al.. (2012). Short telomeres in depression and the general population are associated with a hypocortisolemic state. Biol. Psychiatr. 71: 294–300, https://doi.org/10.1016/j.biopsych.2011.09.015.Search in Google Scholar PubMed

Wohleb, E.S., Terwilliger, R., Duman, C.H., and Duman, R.S. (2018). Stress-induced neuronal colony stimulating factor 1 provokes microglia-mediated neuronal remodeling and depressive-like behavior. Biol. Psychiatr. 83: 38–49, https://doi.org/10.1016/j.biopsych.2017.05.026.Search in Google Scholar PubMed PubMed Central

Wolkowitz, O.M., Burke, H., Epel, E.S., and Reus, V.I. (2009). Glucocorticoids. Mood, memory, and mechanisms. Ann. N. Y. Acad. Sci. 1179: 19–40, https://doi.org/10.1111/j.1749-6632.2009.04980.x.Search in Google Scholar PubMed

Wolkowitz, O.M., Mellon, S.H., Epel, E.S., Lin, J., Dhabhar, F.S., Su, Y., Reus, V.I., Rosser, R., Burke, H.M., Kupferman, E., et al.. (2011). Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress -preliminary findings. PloS One 6: e17837, https://doi.org/10.1371/journal.pone.0017837.Search in Google Scholar PubMed PubMed Central

Wolkowitz, O.M., Mellon, S.H., Epel, E.S., Lin, J., Reus, V.I., Rosser, R., Burke, H., Compagnone, M., Nelson, J.C., Dhabhar, F.S., et al.. (2012). Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol. Psychiatr. 17: 164–172, https://doi.org/10.1038/mp.2010.133.Search in Google Scholar PubMed PubMed Central

World Health Organization. (2017). Depression and other common mental disorders: global health estimates. Geneva: Licence: CC BY-NC-SA 3.0 IGO.Search in Google Scholar

Xie, X., Chen, Y., Ma, L., Shen, Q., Huang, L., Zhao, B., Wu, T., and Fu, Z. (2017). Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress. Behav. Brain Res. 329: 96–103, https://doi.org/10.1016/j.bbr.2017.04.022.Search in Google Scholar PubMed

Yeap, B.B., Hui, J., Knuiman, M.W., Paul, C.S.A., Y, H.K.K., Flicker, L., Divitini, M.L., Arscott, G.M., Twigg, S.M., Almeida, O.P., et al.. (2020). Associations of plasma IGF1, IGFBP3 and estradiol with leucocyte telomere length, a marker of biological age, in men. Eur. J. Endocrinol. 182: 23–33, https://doi.org/10.1530/eje-19-0638.Search in Google Scholar PubMed

Zhang, D., Cheng, L., Craig, D.W., Redman, M., and Liu, C. (2010). Cerebellar telomere length and psychiatric disorders. Behav. Genet. 40: 250–254, https://doi.org/10.1007/s10519-010-9338-0.Search in Google Scholar PubMed PubMed Central

Zhang, P., Dilley, C., and Mattson, M.P. (2007). DNA damage responses in neural cells: focus on the telomere. Neuroscience 145: 1439–1448, https://doi.org/10.1016/j.neuroscience.2006.11.052.Search in Google Scholar PubMed PubMed Central

Zhou, Q.G., Hu, Y., Wu, D.L., Zhu, L.J., Chen, C., Jin, X., Luo, C.X., Wu, H.Y., Zhang, J., and Zhu, D.Y. (2011). Hippocampal telomerase is involved in the modulation of depressive behaviors. J. Neurosci. 31: 12258–12269, https://doi.org/10.1523/jneurosci.0805-11.2011.Search in Google Scholar

Received: 2021-05-16
Accepted: 2021-07-17
Published Online: 2021-08-13
Published in Print: 2022-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2021-0070/html
Scroll to top button