Skip to main content
Log in

Carbonic Anhydrase III Attenuates Hypoxia-Induced Apoptosis and Activates PI3K/Akt/mTOR Pathway in H9c2 Cardiomyocyte Cell Line

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Myocardial ischemia can cause insufficient oxygen and functional damage to myocardial cells. Carbonic anhydrase III (CAIII) has been found to be closely related to the abnormality of cardiomyocytes. To investigate the role of CAIII in the apoptosis of myocytes under hypoxic conditions and facilitate the strategy for treating hypoxia-induced damage, in vitro experiments in H9c2 were employed. The protein expression of CAIII in H9c2 cells after hypoxia or normoxia treatment was determined by western blotting and immunohistochemistry. MTT assay was employed for cells viability measurement and LDH release was monitored. The apoptotic cells were observed using immunofluorescence assay, flow cytometric analysis, and TUNEL assay. CAIII-overexpression or -knockdown cells were constructed to determine the role of CAIII in regulating apoptosis-related proteins caspase-3, Bax, Bcl-2, and anti-apoptosis pathway PI3K/Akt/mTOR. The mRNA levels of CAIII and genes related to CAIII synthesis including REN, IGHM, APOBEC 3F, and SKOR2 were significantly upregulated in hypoxia fetal sheep. The expression of CAIII protein and content of apoptotic H9c2 cells were increased at 1, 3, 6, and 12 h after hypoxia treatment. Overexpression of CAIII significantly upregulated Bcl2 level and downregulated Bax and caspase-3 cleavage levels, while its knockdown led to the contrary results. Overexpressed CAIII promoted the HIF-1α level and activated the PI3K/Akt/mTOR pathway, thereby exerting an inhibitory effect on hypoxia-induced apoptosis. In conclusion, our findings revealed that CAIII could protect cell from hypoxia-apoptosis of H9c2 cells, in which, activated PI3K/Akt/mTOR signaling pathway may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

Abbreviations

CAIII:

Carbonic anhydrase III

AMI:

Acute myocardial infarction

MI:

Myocardial ischemia

CA:

Carbonic anhydrase

qRT-PCR:

Real-time reverse transcription quantitative PCR

FBS:

Fetal bovine serum

H/N:

Hypoxia/Normoxia

DAPI:

4',6-Diamidino-2-phenylindole

AV/PI:

Annexin V-FITC/propidium iodide

DMSO:

Dimethyl sulfoxide

LDH:

Lactate dehydrogenase

SD:

Standard deviation

ANOVA:

Analysis of variance

References

  1. Gulati, R., Behfar, A., Narula, J., Kanwar, A., Lerman, A., Cooper, L., & Singh, M. (2020). Acute myocardial infarction in young individuals. Mayo Clinic Proceedings, 95, 136–156.

    Article  PubMed  Google Scholar 

  2. Li, M., Ding, W., Tariq, M. A., et al. (2018). A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics, 8, 5855–5869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han, D., Wang, Y., Chen, J., et al. (2019). Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. Journal of Pineal Research, 67, e12571.

    Article  PubMed  CAS  Google Scholar 

  4. Penaloza, D., & Arias-Stella, J. (2007). The heart and pulmonary circulation at high altitudes: Healthy highlanders and chronic mountain sickness. Circulation, 115, 1132–1146.

    Article  PubMed  Google Scholar 

  5. Wang, Y., Zhao, Z., Zhu, Z., Li, P., Li, X., Xue, X., Duo, J., & Ma, Y. (2018). Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia. Journal of Physiological Anthropology, 37, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Innocenti, A., Scozzafava, A., Parkkila, S., Puccetti, L., De Simone, G., & Supuran, C. T. (2008). Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorganic & Medicinal Chemistry Letters, 18, 2267–2271.

    Article  CAS  Google Scholar 

  7. Zebral, Y. D., da Silva, F. J., Marques, J. A., & Bianchini, A. (2019). Carbonic anhydrase as a biomarker of global and local impacts: Insights from calcifying animals. International Journal of Molecular Sciences, 20, 3092.

    Article  CAS  PubMed Central  Google Scholar 

  8. Shang, X., Chen, S., Ren, H., Li, Y., & Huang, H. (2009). Carbonic anhydrase III: The new hope for the elimination of exercise-induced muscle fatigue. Medical Hypotheses, 72, 427–429.

    Article  CAS  PubMed  Google Scholar 

  9. Lippi, G., Schena, F., Montagnana, M., Salvagno, G. L., & Guidi, G. C. (2008). Influence of acute physical exercise on emerging muscular biomarkers. Clinical Chemistry and Laboratory Medicine, 46, 1313–1318.

    CAS  PubMed  Google Scholar 

  10. Ren, H. M., Jiang-Long, T. U., Ai-Lian, D. U., & Huang, J. (2005). Demonstration of carbonic anhydrase III for 25 000 protein decreased in skeletal muscle of myasthenia gravis. Chinese Journal of Neurology, 38, 764–768.

    CAS  Google Scholar 

  11. Zoll, J., Ponsot, E., Dufour, S., et al. (2006). Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. Journal of Applied Physiology, 100, 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  12. Engelman, J. A. (2009). Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nature Reviews Cancer, 9, 550–562.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y., Zhang, J. W., Lv, G. Y., Xie, S. L., & Wang, G. Y. (2012). Effects of STAT3 gene silencing and rapamycin on apoptosis in hepatocarcinoma cells. International Journal of Medical Sciences, 9, 216–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jalde, F. C., Jalde, F., Sackey, P. V., et al. (2016). Neurally adjusted ventilatory assist feasibility during anaesthesia: A randomised crossover study of two anaesthetics in a large animal model. European Journal of Anaesthesiology, 33(4), 283–291.

    Article  PubMed  Google Scholar 

  15. Schill, M. R., Melby, S. J., Speltz, M., Breitbach, M., Schuessler, R. B., & Damiano, R. J., Jr. (2017). Evaluation of a novel cryoprobe for atrial ablation in a chronic ovine model. Annals of Thoracic Surgery, 104, 1069–1073.

    Article  Google Scholar 

  16. Cicero, L., Fazzotta, S., Palumbo, V. D., et al. (2014). Anesthesia protocols in laboratory animals used for scientific purposes. Journal of the American Association for Laboratory Animal Science, 53(3), 290–300.

    Google Scholar 

  17. Fernando, S. C., Adriano, B. C., Alceu, G. R., et al. (2010). Total intravenous anesthesia with propofol and S(+)-ketamine in rabbits. Veterinary Anaesthesia and Analgesia, 37(2), 116–22.

    Article  CAS  Google Scholar 

  18. Dileep, K., Gauhar, A., Muhammad, Z., et al. (2019). Isoflurane alone versus small dose propofol with isoflurane for removal of laryngeal mask airway in children-A randomized controlled trial. The Journal of the Pakistan Medical Association, 69(11), 1596–1600.

    Google Scholar 

  19. Tanya, D. N., Carolina, P. J., Tara, W., et al. (2015). Cardiopulmonary effects of dexmedetomidine and ketamine infusions with either propofol infusion or isoflurane for anesthesia in horses. Veterinary Anaesthesia and Analgesia, 42(1), 39–49.

    Article  CAS  Google Scholar 

  20. Yang, J., Chen, L., Ding, J., et al. (2016). Cardioprotective effect of miRNA-22 on hypoxia/reoxygenation induced cardiomyocyte injury in neonatal rats. Gene, 579, 17–22.

    Article  CAS  PubMed  Google Scholar 

  21. Faridvand, Y., Nozari, S., et al. (2018). Nrf2 activation and down-regulation of HMGB1 and MyD88 expression by amnion membrane extracts in response to the hypoxia-induced injury in cardiac H9c2 cells. Biomedecine & Pharmacotherapie, 109, 360.

    Article  CAS  Google Scholar 

  22. Li, H., Hu, J., Liu, Y., et al. (2018). Effects of prenatal hypoxia on fetal sheep heart development and proteomics analysis. International Journal of Clinical and Experimental Pathology, 11, 1909–1922.

    PubMed  PubMed Central  Google Scholar 

  23. Zhao, T., Fu, Y., Sun, H., & Liu, X. (2018). Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB Life, 70, 60–70.

    Article  CAS  PubMed  Google Scholar 

  24. Yeung, H. M., Hung, M. W., Lau, C. F., & Fung, M. L. (2015). Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. Journal of Pineal Research, 58, 12–25.

    Article  CAS  PubMed  Google Scholar 

  25. Staunton, L., Zweyer, M., Swandulla, D., & Ohlendieck, K. (2012). Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle. International Journal of Molecular Medicine, 30, 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaananen, H. K., Syrjala, H., Rahkila, P., et al. (1990). Serum carbonic anhydrase III and myoglobin concentrations in acute myocardial infarction. Clinical Chemistry, 36, 635–638.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, X., Wang, K., Hu, F., et al. (2015). MicroRNA-101 protects cardiac fibroblasts from hypoxia-induced apoptosis via inhibition of the TGF-beta signaling pathway. International Journal of Biochemistry & Cell Biology, 65, 155–164.

    Article  CAS  Google Scholar 

  28. Lu, Z., Li, S., Zhao, S., & Fa, X. (2016). Upregulated miR-17 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation and apoptosis by targeting mitofusin 2. Medical Science Monitor, 22, 3301–3308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shang, X., Bao, Y., Chen, S., Ren, H., Huang, H., & Li, Y. (2012). Expression and purification of TAT-fused carbonic anhydrase III and its effect on C2C12 cell apoptosis induced by hypoxia/reoxygenation. Archives of Medical Science AMS, 4, 711–718.

    Article  CAS  Google Scholar 

  30. Wu, X., Hao, C., Ling, M., Guo, C., & Ma, W. (2015). Hypoxia-induced apoptosis is blocked by adrenomedullin via upregulation of Bcl-2 in human osteosarcoma cells. Oncology Reports, 34, 787–794.

    Article  CAS  PubMed  Google Scholar 

  31. Pan, Y. L., Han, Z. Y., He, S. F., et al. (2018). miR133b5p contributes to hypoxic preconditioningmediated cardioprotection by inhibiting the activation of caspase8 and caspase-3 in cardiomyocytes. Molecular Medicine Reports, 17, 7097–7104.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Eldehna, W. M., Abo-Ashour, M. F., Nocentini, A., et al. (2017). Novel 4/3-((4-oxo-5-(2-oxoindolin-3-ylidene)thiazolidin-2-ylidene)amino) benzenesulfonamides: Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular modelling studies. European Journal of Medicinal Chemistry, 139, 250–262.

    Article  CAS  PubMed  Google Scholar 

  33. Saenz-de-Santa-Maria, I., Bernardo-Castineira, C., Secades, P., et al. (2017). Clinically relevant HIF-1alpha-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget, 8, 13730–13746.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giacoppo, S., Bramanti, P., & Mazzon, E. (2017). Triggering of inflammasome by impaired autophagy in response to acute experimental Parkinson’s disease: Involvement of the PI3K/Akt/mTOR pathway. NeuroReport, 28, 996–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LoPiccolo, J., Blumenthal, G. M., Bernstein, W. B., & Dennis, P. A. (2008). Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resistance Updates, 11, 32–50.

    Article  CAS  PubMed  Google Scholar 

  36. Shen, W., Cheng, K., Bao, Y., Zhou, S., & Yao, H. (2012). Expression of Glut-1, HIF-1α, PI3K and p-Akt in a case of ceruminous adenoma. Head & Neck Oncology, 4, 18.

    Article  Google Scholar 

  37. Agani, F., & Jiang, B. H. (2013). Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer. Current Cancer Drug Targets, 13, 245–251.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, L., Liu, Y., Wang, M., et al. (2016). Celastrus orbiculatus extract triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in human colorectal cancer cells. Oncology Letters, 12, 3771–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, B. R., Shin, H. J., Kim, J. Y., Byun, H. J., Lee, J. H., Sung, Y. K., & Rho, S. B. (2012). Dickkopf-1 (DKK-1) interrupts FAK/PI3K/mTOR pathway by interaction of carbonic anhydrase IX (CA9) in tumorigenesis. Cellular Signalling, 24, 1406–1413.

    Article  CAS  PubMed  Google Scholar 

  40. Chu, Y. H., Su, C. W., Hsieh, Y. S., Chen, P. N., Lin, C. W., & Yang, S. F. (2020). Carbonic anhydrase III promotes cell migration and epithelial-mesenchymal transition in oral squamous cell carcinoma. Cells, 9, 704.

    Article  CAS  PubMed Central  Google Scholar 

  41. Dai, H. Y., Hong, C. C., Liang, S. C., Yan, M. D., Lai, G. M., Cheng, A. L., & Chuang, S. E. (2008). Carbonic anhydrase III promotes transformation and invasion capability in hepatoma cells through FAK signaling pathway. Molecular Carcinogenesis, 47, 956–963.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by “The effects of hypoxia during pregnancy on fetal cardiovascular development and its related mechanisms” (Grant No.: 81560291).

Author information

Authors and Affiliations

Authors

Contributions

HL conceived and designed the entire study; HL and YBL collected and analyzed the data, and they were responsible for data interpretation; they were co-first authors; ST, JH, QLW, YW, and MN performed statistical analysis, literature research, and data visualization; HL and YBL wrote the manuscript. HL revised it critically for important intellectual content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Ethics Committee of General Hospital of Xinjiang Military Region of the People's Liberation Army (No. 2017.301).

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Y., Tang, S. et al. Carbonic Anhydrase III Attenuates Hypoxia-Induced Apoptosis and Activates PI3K/Akt/mTOR Pathway in H9c2 Cardiomyocyte Cell Line. Cardiovasc Toxicol 21, 914–926 (2021). https://doi.org/10.1007/s12012-021-09683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09683-w

Keywords

Navigation