Skip to main content
Log in

Genetic diversity and inter-gene pool introgression of Mesoamerican Diversity Panel in common beans

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Not applicable.

References

  • Almeida LD de, Leitão Filho HF, Miyasaka S (1971) Características do feijão Carioca, um nôvo cultivar. Bragantia 30:. https://doi.org/10.1590/s0006-87051971000100015

  • Angioi SA, Rau D, Attene G et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843. https://doi.org/10.1007/s00122-010-1353-2

  • Bartoli C, Roux F (2017) Genome-wide association studies in plant pathosystems: toward an ecological genomics approach. Front Plant Sci 8:763

  • Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L, Papa R (2014) Genomics of origin, domestication and evolution of phaseolus vulgaris. In F. E. Tuberosa R., Graner A. (Ed.), Genomics of Plant Genetic Resources: (1st ed., pp. 483–507). Springer Netherlands. https://doi.org/10.1007/978-94-007-7572-5_20

  • Benchimol LL, De CT, Carbonell SAM et al (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Resour Crop Evol 54:1747–1762. https://doi.org/10.1007/s10722-006-9184-3

  • Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A 109:E788–E796. https://doi.org/10.1073/pnas.1108973109

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti ZP, Gioia T, Logozzo G, Attene G, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197(1):300–313. https://doi.org/10.1111/j.1469-8137.2012.04377.x

  • Bitocchi E, Rau D, Bellucci E, et al (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci 8:. https://doi.org/10.3389/fpls.2017.00722

  • Blair MW, Giraldo MC, Buendía HF et al (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109. https://doi.org/10.1007/s00122-006-0276-4

  • Blair MW, Cortés AJ, Farmer AD, et al (2018) Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One 13:e0189597. https://doi.org/10.1371/journal.pone.0189597

  • Bohar R, Chitkineni A, Varshney RK (2020) Genetic molecular markers to accelerate genetic gains in crops. Biotechniques 69:159–161

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinforma Appl 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

  • Browning BL, Zhou Y, Browning SR (2018) A one-penny imputed genome from next-generation reference panels. Am J Hum Genet 103:338–348. https://doi.org/10.1016/j.ajhg.2018.07.015

  • Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813. https://doi.org/10.1007/s00122-010-1350-5

  • Câmara C, Urrea C, Schlegel V (2013) Pinto beans (Phaseolus vulgaris L.) as a functional food: implications on human health. Agriculture 3:90–111. https://doi.org/10.3390/agriculture3010090

  • Campa A, Murube E, Ferreira JJ (2018) Genetic diversity, population structure, and linkage disequilibrium in a spanish common bean diversity panel revealed through genotyping-by-sequencing. Genes (Basel) 9:. https://doi.org/10.3390/genes9110518

  • Campos-Vega R, Loarca-Piña G, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482

  • Carbonell SAM, Chiorato AF, Ito MF, et al (2008) IAC-Alvorada and IAC-Diplomata: New common bean cultivars. crop breed Appl Biotechnol 8:163–166. https://doi.org/10.12702/1984-7033.v08n02a10

  • Carbonell SAM, Chiorato AF, Bezerra LMC et al (2019) IAC 1850: High yielding carioca common bean cultivar. Crop Breed Appl Biotechnol 19:378–381. https://doi.org/10.1590/1984-70332019v19n3c53

  • Carbonell SAM, Chiorato AF, Bezerra LMC et al (2020) IAC nuance and IAC tigre: common bean cultivars for special markets. Crop Breed Appl Biotechnol 20:1–4. https://doi.org/10.1590/1984-70332020v20n3c39

  • Cardador-Martínez A, Loarca-Piña G, Oomah BD (2002) Antioxidant activity in common beans (Phaseolus vulgaris L.). J Agric Food Chem 50:6975–6980. https://doi.org/10.1021/jf020296n

  • Carović-Stanko K, Liber Z, Vidak M et al (2017) Genetic diversity of croatian common bean landraces. Front Plant Sci 8:604. https://doi.org/10.3389/fpls.2017.00604

  • Castro-Guerrero NA, Isidra-Arellano MC, Mendoza-Cozatl DG, Valdés-López O (2016) Common bean: a legume model on the rise for unraveling responses and adaptations to iron, zinc, and phosphate deficiencies. Front Plant Sci 7:391–417. https://doi.org/10.3389/fpls.2016.00600

  • Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Gen 110(3):432–444. https://doi.org/10.1007/s00122-004-1842-2

  • Chacón-Sánchez MI, Martínez-Castillo J, Duitama J, Debouck DG (2021) Gene flow in Phaseolus beans and its role as a plausible driver of ecological fitness and expansion of cultigens. Front Ecol Evol 9(618709):1–25. https://doi.org/10.3389/fevo.2021.618709

  • Chiorato AF, Carbonell SAM, Colombo CA, et al (2005) Genetic diversity of common bean accessions in the germplasm bank of the Instituto Agronômico. Artic Crop Breed Appl Biotechnol 5:1–9. https://doi.org/10.12702/1984-7033.v05n01a01

  • Chiorato AF, Carbonell SAM, dos Dias LA, S, et al (2006) Identification of common bean (Phaseolus vulgaris) duplicates using agromorphological and molecular data. Genet Mol Biol 29:105–111. https://doi.org/10.1590/S1415-47572006000100020

  • Chiorato AF, Carbonell SAM, Gonçalves JGR et al (2018) IAC sintonia: new carioca common bean cultivar. Crop Breed Appl Biotechnol 18:338–342

  • Chiorato AF, Carbonell SAM, Bezerra LMC et al (2020) IAC 1849 Polaco: carioca common bean cultivar with an early maturity and tolerance to seed darkening. Crop Breed Appl Biotechnol 20:1–4. https://doi.org/10.1590/1984-70332020v20n3c40

  • CIMMYT (2005) Laboratory protocols: CIMMYT applied molecular genetics laboratory protocols. CIMMYT, Mexico, 3rd editio. CIMMYT, Mexico City

  • Corrales P, Antonio M, Erazo, Oscar A, Estrada Salazar EI (1994) Inheritance of anthracnose resistance in common bean accession G 2333. Plant Dis 78:959–962

  • Cortinovis G, Frascarelli G, Di Vittori V, Papa R (2020) Current state and perspectives in population genomics of the common bean. Plants 9:330. https://doi.org/10.3390/plants9030330

  • Crispin-Medina A (1960) Cruzamento natural en al frijol. Agricultura Técnica 11:38–39

  • de Almeida CP, de Paulino JF, Morais C, Carbonell SA et al (2020) Genetic diversity, population structure, and Andean introgression in Brazilian common bean cultivars after half a century of genetic breeding. Genes (basel) 11:1298. https://doi.org/10.3390/genes11111298

  • de Santis FP, Salvador Neto A, Cavalcante AG et al (2019) Componentes de produção, produtividade e atributos tecnológicos de cultivares de feijoeiro do grupo comercial carioca. Colloq Agrar ISSN 1809–8215:21–30

  • Delfini J, Moda-Cirino V, de Ruas C, F, et al (2017) Distinctness of Brazilian common bean cultivars with carioca and black grain by means of morphoagronomic and molecular descriptors. PLoS ONE 12:e0188798. https://doi.org/10.1371/journal.pone.0188798

  • Delfini J, Moda-Cirino V, dos Santos NJ et al (2021) Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Sci Rep 11:2964. https://doi.org/10.1038/s41598-021-82437-4

  • Diniz AL, Giordani W, Costa ZP et al (2019) Evidence for strong kinship influence on the extent of linkage disequilibrium in cultivated common beans. Genes (basel) 10(1):5. https://doi.org/10.3390/genes10010005

  • Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7:47–52

  • Earl DA, VonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

  • Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32. https://doi.org/10.1111/1755-0998.12509

  • Freitas FO (2006) Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil. Pesq Agropec Bras 41:1199–1203

  • Gepts P (2014) The contribution of genetic and genomic approaches to plant domestication studies. Curr Opin Plant Biol 18:51–59. https://doi.org/10.1016/j.pbi.2014.02.001

  • Gepts P, Bliss FA (1986) Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ Bot 40(4):469–478. https://doi.org/10.1007/BF02859660

  • Gepts P, Kmiecik K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I the Americas Econ Bot 42:73–85. https://doi.org/10.1007/BF02859036

  • Gioia T, Logozzo G, Attene G, et al (2013) Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) Germplasm. PLoS One 8:. https://doi.org/10.1371/journal.pone.0075974

  • Gioia T, Logozzo G, Marzario S, et al (2019) Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS One 14:e0211342. https://doi.org/10.1371/journal.pone.0211342

  • Gomes RLF, Costa MF, Alves-Pereira A et al (2020) A lima bean core collection based on molecular markers. Sci Agric 77:2020. https://doi.org/10.1590/1678-992x-2018-0140

  • Gonçalves JGR, de Andrade ER, da Silva DA et al (2019) Drought tolerance evaluated in common bean genotypes. Cienc e Agrotecnologia 43:1719. https://doi.org/10.1590/1413-7054201943001719

  • Hannah MA, Iqbal MJ, Sander FE (2000) The DL gene system in common bean: a possible mechanism for control of root-shoot partitioning. New Phytol 147:487–496. https://doi.org/10.1046/j.1469-8137.2000.00711.x

  • Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78. https://doi.org/10.1016/0040-5809(88)90004-4

  • Hoehne FC (1937) Botânica e agricultura no Brasil no seculo XVI. Cia.Editora Nacional, São Paulo

    Google Scholar 

  • Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome 10:plantgenome2015.12.0122. https://doi.org/10.3835/plantgenome2015.12.0122

  • Hubbeling N (1957) New aspects of breeding for disease resistance in beans (Phaseolus vulgaris L.). Euphytica 6:111–141

  • Jakobsson M, Rosenberg NA (2007) Genetics and population analysis CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. academic.oup.com 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233

  • Johnson WC, Gepts P (1999) Segregation for performance in recombinant inbred populations resulting from inter-gene pool crosses of common bean (Phaseolus vulgaris L.). Euphytica 106:45–56. https://doi.org/10.1023/A:1003541201923

  • Johnson WC, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an Andean x Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica 125:69–79. https://doi.org/10.1023/A:1015775822132

  • Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521

  • Kalinowski ST (2005) HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x

  • Kalinowski S, Taper M, ecology TM-M, (2007) undefined (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Wiley Online Libr 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

  • Kamfwa K, Cichy KA, Kelly JD (2015) Genome-wide association study of agronomic traits in common bean. Plant Genome 8:plantgenome2014.09.0059. https://doi.org/10.3835/plantgenome2014.09.0059

  • Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:. https://doi.org/10.3389/fgene.2015.00208

  • Koinange EMK, Gepts P (1992) Hybrid weakness in wild Phaseolus Vulgaris L. J Hered 83:135–139. https://doi.org/10.1093/oxfordjournals.jhered.a111173

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36(4):1037–1045. https://doi.org/10.2135/cropsci1996.0011183X003600040037x

  • Kopelman NM, Mayzel J, Jakobsson M et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. https://doi.org/10.1111/1755-0998.12387

  • Kuzay S, Hamilton-Conaty P, Palkovic A, Gepts P (2020) Is the USDA core collection of common bean representative of genetic diversity of the species, as assessed by SNP diversity? Crop Sci 60:1398–1414. https://doi.org/10.1002/csc2.20032

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992. https://doi.org/10.1007/s00122-008-0955-4

  • Lobaton JD, Miller T, Gil J et al (2018) Resequencing of common bean identifies regions of inter-gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11:170068. https://doi.org/10.3835/plantgenome2017.08.0068

  • Mangin B, Siberchicot A, Nicolas S et al (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity (edinb) 108:285–291. https://doi.org/10.1038/hdy.2011.73

  • McClean PE, Moghaddam SM, Lopéz-Millán AF et al (2017) Phenotypic diversity for seed mineral concentration in North American dry bean germplasm of middle american ancestry. Crop Sci 57:3129–3144. https://doi.org/10.2135/cropsci2017.04.0244

  • McClean PE, Bett KE, Stonehouse R et al (2018) White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment ) gene. New Phytol 219:1112–1123. https://doi.org/10.1111/nph.15259

  • Melo LC, Pereira HS, de Faria LC et al (2017) BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt. Crop Breed Appl Biotechnol 17:67–71. https://doi.org/10.1590/1984-70332017v17n1c11

  • Moda-Cirino V, Fonseca Junior NS, Buratto JS (2016) Recurrent selection to development of carioca type common beans cultivars at IAPAR. Annu Rep Bean Improv Coop 59:73–74

  • Moghaddam SM, Mamidi S, Osorno JM et al (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a middle American diversity panel of common bean. Plant Genome 9:1–21. https://doi.org/10.3835/plantgenome2016.02.0012

  • Myers JR, Wallace LT, Moghaddam SM, et al (2019) Improving the health benefits of snap bean: genome-wide association studies of total phenolic content. Nutrients 11:. https://doi.org/10.3390/nu11102509

  • Navabi A, Balasubramanian P, Pauls KP et al (2014) Genetic diversity of the Canadian dry bean varieties released since 1930: a pedigree analysis. Crop Sci 54:993–1003. https://doi.org/10.2135/cropsci2013.04.0210

  • Nay MM, Souza TLPO, Raatz B et al (2019) A review of angular leaf spot resistance in common bean. Crop Sci 59:1376–1391. https://doi.org/10.2135/cropsci2018.09.0596

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

  • Oladzad A, Zitnick-Anderson K, Jain S, et al (2019) Genotypes and genomic regions associated with rhizoctonia solani resistance in common bean. Front Plant Sci 10:. https://doi.org/10.3389/fpls.2019.00956

  • Pacova BEV and Rocha ACM (1975) Hibridação natural no feijoeiro (P. vulgaris L.) em Linhares. Espirito Santo Ceres 22:157–158

  • Pastor Corrales MA, Jara CE (1995) La evolución de Phaeoisariopsis griseola con el frijol común en América Latina. Fitopatol Colomb 19:19(1):15–24

  • Pastor-Corrales MA (1991) Estandarización de variedades diferenciales y de designación de razas de Colletotrichum lindemuthianum. Phytopathology 81:

  • Pastor-Corrales MA, Abawi GS (1987) Reactions of selected bean germ plasms to infection by Fusarium oxysporum f. sp. phaseoli. Plant Dis 71:990. https://doi.org/10.1094/pd-71-0990

  • Paulino JFdC, Almeida CPd, Bueno CJ, Song Q, Fritsche-Neto R, Carbonell SAM, Chiorato AF, Benchimol-Reis LL (2021) Genome-wide association study reveals genomic regions associated with Fusarium wilt resistance in common bean. Genes 12:765. https://doi.org/10.3390/genes12050765

  • Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

  • Pereira LA, Cavariani C (1984) Taxa de hibridação natural do feijoeiro comum em Patos de Minas. Minas Gerais Pesq Agropec Bras 19:1181–1183

  • Pereira T, Coelho CM, Bogo A et al (2009) Diversity in common bean landraces from south Brazil. Acta Bot Croat 68:79–92

  • Pereira HS, Mota APS, Rodrigues LA et al (2019) Genetic diversity among common bean cultivars based on agronomic traits and molecular markers and application to recommendation of parent lines. Euphytica 215:1–16. https://doi.org/10.1007/s10681-018-2324-y

  • Perseguini JMKC, Silva GMB, Rosa JRBF et al (2015) Developing a common bean core collection suitable for association mapping studies. Genet Mol Biol 38:67–78. https://doi.org/10.1590/S1415-475738120140126

  • Poletine JP, Gonçalves-Vidigal MC, Vidigal Filho PS et al (2000) Inheritance of resistance to races 69 and 453 of Colletotrichum lindemuthianum in the common bean. Brazilian Arch Biol Technol 43:479–485. https://doi.org/10.1590/s1516-89132000000500006

  • Pompeu AS (1963) Polinizaçâo cruzada natural no feijoeiro. Bragantia 22:53–57

  • Pompeu AS (1997) IAC-Maravilha, IAC-Una, IAC-Carioca Pyatã, IAC-Carioca Aruã, IAC-Carioca Akytã e IAC-Bico de Ouro: Novos cultivares de feijoeiro. Bragantia 56:79–85

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

  • Prohens J, Gramazio P, Plazas M, et al (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:. https://doi.org/10.1007/s10681-017-1938-9

  • Regina-Royer M, Gonçalves-Vidigal MC, Scapim CA, Vidigal-Filho PS, Miglioranza E (2000) Natural outcrossing rates of bean cultivars (Phaseolus vulgaris L.). Annu Rep Bean Improv Coop 43:194–195

  • Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S et al (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18:60. https://doi.org/10.1186/s13059-017-1190-6

  • Rezende AA, Pacheco MTB, da SILVA VSN, de Ferreira TAP C (2018) Nutritional and protein quality of dry brazilian beans (Phaseolus vulgaris l.). Food Sci Technol 38:421–427. https://doi.org/10.1590/1678-457x.05917

  • Rodriguez M, Rau D, Bitocchi E et al (2016) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytol 209:1781–1794. https://doi.org/10.1111/nph.13713

  • Rossi M, Bitocchi E, Bellucci E et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522. https://doi.org/10.1111/j.1752-4571.2009.00082.x

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713. https://doi.org/10.1038/ng.3008

  • Singh SP (2001) Broadening the genetic base of common bean cultivars. Crop Sci 41:1659–1675. https://doi.org/10.2135/cropsci2001.1659

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396. https://doi.org/10.1007/BF02887079

  • Soltani A, MafiMoghaddam S, Walter K et al (2017) Genetic architecture of flooding tolerance in the dry bean middle-American diversity panel. Front Plant Sci 8:1183. https://doi.org/10.3389/fpls.2017.01183

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Q, Jia G, Hyten DL, et al (2015) SNP Assay development for linkage map construction, anchoring whole-genome sequence, and other genetic and genomic applications in common bean. g3journal.org. https://doi.org/10.1534/g3.115.020594

  • Valdisser PAMR, Pereira WJ, Almeida Filho JE, et al (2017) In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 18:. https://doi.org/10.1186/s12864-017-3805-4

  • Valdisser PAMR, Müller BSF, de Almeida Filho JE et al (2020) Genome-wide association studies detect multiple QTLs for productivity in Mesoamerican diversity panel of common bean under drought stress. Front Plant Sci 11:1563. https://doi.org/10.3389/fpls.2020.574674

  • Valentini G, Gonçalves-Vidigal MC, Elias JCF et al (2018) Population structure and genetic diversity of common bean accessions from Brazil. Plant Mol Biol Report 36:897–906. https://doi.org/10.1007/s11105-018-1129-4

  • Varshney RK, Sinha P, Singh VK et al (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196

  • Veasey EA et al (2011) Processos evolutivos e a origem das plantas cultivadas. Ciência Rural 41(7):1218–1228. https://doi.org/10.1590/S0103-84782011000700018

  • Veloso JS, Silva W, Pinheiro LR et al (2015) Genetic divergence of common bean cultivars. Genet Mol Res 14:11281–11291. https://doi.org/10.4238/2015.September.22.22

  • Vencovsky R (1987) Tamanho efetivo populacional na coleta e preservação de germoplasma de espécies alógamas. Instituto De Pesquisas e Estudos Florestais 35:79–84

  • Vieira C (1960) Sobre a hibridação natural em P. vulgaris. Ceres 11:103–107

  • Vieira C (1988) Phaseolus genetic resources and breeding in Brazil. Genetic Resources of Phaseolus Beans. Springer, Dordrecht, pp 467–483

    Chapter  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

  • Wen L, Chang HX, Brown PJ et al (2019) Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. Hortic Res 6:1–12. https://doi.org/10.1038/s41438-018-0085-3

  • Wright S (1951) The genetical structure of populations. Annual Eugenics 15:223–354

  • Young RA, Melotto M, Nodari RO, Kelly JD (1998) Marker-assisted dissection of the oligogenic anthracnose resistance in the common bean cultivar, “G 2333.” Theor Appl Genet 96:87–94. https://doi.org/10.1007/s001220050713

  • Yu Z, Chang F, Lv W et al (2019) Identification of QTN and candidate gene for seed-flooding tolerance in soybean [Glycine max (L.) Merr.] using genome-wide association study (GWAS). Genes (Basel) 10:957. https://doi.org/10.3390/genes101209572:235-24

  • Zhou Y, Duvaux L, Ren G et al (2017) Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118:211–220. https://doi.org/10.1038/hdy.2016.72

  • Zizumbo-Villarreal D, Colunga-Garcíamarín P, De La Cruz EP, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083

Download references

Funding

This research was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant number Proc. 2017/24711–4 and scholarships 2017/01753–3, 2018/15526–1, and 2019/19670–2, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior through scholarship grants.

Author information

Authors and Affiliations

Authors

Contributions

L.L.B.R., A.F.C., and J.P.C. P., designed the study, and L.L.B.R. was responsible for the project funding. J.F.C.P. and C.P.A. conceived the structure of the manuscript, and J.F.C.P. wrote the initial manuscript. J.F.C.P. and C.P.A. conducted the experiments. J.F.C.P. and C.P.A., performed the date analyzes. Q.S. analyzes accuracy. L.L.B.R., A.F.C., Q. S, and S.A.M.C. supported the data curation and conducted reviewed the manuscript. All the authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Jean Fausto de Carvalho Paulino.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Izabela Pawłowicz.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jean Fausto de Carvalho Paulino and Caléo Panhoca de Almeida are co-first authors

Supplementary Information

Below is the link to the electronic supplementary material.

13353_2021_657_MOESM1_ESM.xlsx

Supplementary file1 Details of the 288 cultivars: gene pool, commercial classification, grain size, institution of origin and ancestry coefficient (STRUCTURE) for K = 2 and K = 4 and pedigree.  (XLSX 57 KB)

13353_2021_657_MOESM2_ESM.xlsx

Supplementary file 2 The 288 genotypes genotyped with 4,042 SNPs of the panel grouped in by K = 4 were obtained by the analysis of the genetic structure and their respective main characteristics, and MDP selection with 2,437 SNPs. (XLSX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Paulino, J.F., de Almeida, C.P., Song, Q. et al. Genetic diversity and inter-gene pool introgression of Mesoamerican Diversity Panel in common beans. J Appl Genetics 62, 585–600 (2021). https://doi.org/10.1007/s13353-021-00657-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-021-00657-w

Keywords

Navigation