Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control

Abstract

Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells’ activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40–42 °C). In vitro, heating engineered primary human T cells for 15–30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells’ proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Constructing thermal-specific gene switches.
Fig. 2: Thermal treatments are well-tolerated by primary human T cells.
Fig. 3: Photothermal activation of engineered T cells in vivo.
Fig. 4: Photothermal control of IL-15 SA enhances adoptive T cell transfer and overall survival in mice.
Fig. 5: Expanding CAR T cell targeting via heat-triggered BiTEs.
Fig. 6: Photothermal control of TS-BiTE αHER2 CAR T cells mitigates outgrowth of antigen-negative tumours.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The data generated and analysed during the study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Priceman, S. J., Forman, S. J. & Brown, C. E. Smart CARs engineered for cancer immunotherapy. Curr. Opin. Oncol. 27, 466–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 1969–1974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. John, L. B., Kershaw, M. H. & Darcy, P. K. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2, e26286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Slaney, C. Y., Wang, P., Darcy, P. K. & Kershaw, M. H. CARs versus BiTEs: a comparison between T cell-redirection strategies for cancer treatment. Cancer Discov. 8, 924–934 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Waldmann, T. A. et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood 117, 4787–4795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conlon, K. C. et al. Redistribution, hyperproliferation, and activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, T. T. et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Invest. 127, 2176–2191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances antitumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kosti, P. et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumours. Cell Rep. Med. 2, 100227 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liao, Q. et al. Engineering T cells with hypoxia-inducible chimeric antigen receptor (HiCAR) for selective tumor killing. Biomark. Res. 8, 56 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann, K. et al. Design and characterization of an ‘all-in-one’ lentiviral vector system combining constitutive anti-GD2 CAR expression and inducible cytokines. Cancers 12, 375 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  23. Kunert, A. et al. Intratumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 7, e1378842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roybal, K. T. et al. Precision tumour recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho, J. H. et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat. Commun. 12, 792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Driel, W. J. et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N. Engl. J. Med. 378, 230–240 (2018).

    Article  PubMed  Google Scholar 

  29. Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).

    Article  CAS  Google Scholar 

  30. Mitchell, D. et al. A heterogeneous tissue model for treatment planning for magnetic resonance-guided laser interstitial thermal therapy. Int. J. Hyperthermia 34, 943–952 (2018).

    Article  PubMed  Google Scholar 

  31. Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Jr Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192–S203 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Amin, J., Ananthan, J. & Voellmy, R. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8, 3761–3769 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakurai, H. & Enoki, Y. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J. 277, 4140–4149 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Jaeger, A. M., Makley, L. N., Gestwicki, J. E. & Thiele, D. J. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. J. Biol. Chem. 289, 30459–30469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whitlock, N. A., Agarwal, N., Ma, J. X. & Crosson, C. E. Hsp27 upregulation by HIF-1 signaling offers protection against retinal ischemia in rats. Invest. Ophthalmol. Vis. Sci. 46, 1092–1098 (2005).

    Article  PubMed  Google Scholar 

  36. Wu, B. J., Kingston, R. E. & Morimoto, R. I. Human HSP70 promoter contains at least two distinct regulatory domains. Proc. Natl Acad. Sci. USA 83, 629–633 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalmar, B. & Greensmith, L. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug Deliv. Rev. 61, 310–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Vilaboa, N. E. et al. cAMP increasing agents prevent the stimulation of heat-shock protein 70 (HSP70) gene expression by cadmium chloride in human myeloid cell lines. J. Cell Sci. 108, 2877–2883 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, Q., Schett, G., Li, C., Hu, Y. & Wick, G. Mechanical stress-induced heat shock protein 70 expression in vascular smooth muscle cells is regulated by Rac and Ras small G proteins but not mitogen-activated protein kinases. Circ. Res. 86, 1122–1128 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kadonaga, J. T. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1, 40–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Flanagan, S. W., Ryan, A. J., Gisolfi, C. V. & Moseley, P. L. Tissue-specific HSP70 response in animals undergoing heat stress. Am. J. Physiol. 268, R28–R32 (1995).

    CAS  PubMed  Google Scholar 

  42. Miller, I. C., Castro, M. G., Maenza, J., Weis, J. P. & Kwong, G. A. Remote control of mammalian cells with heat-triggered gene switches and photothermal pulse trains. ACS Synth. Biol. 7, 1167–1173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ede, C., Chen, X., Lin, M. Y. & Chen, Y. Y. Quantitative analyses of core promoters enable precise engineering of regulated gene expression in mammalian cells. ACS Synth. Biol. 5, 395–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hansen, J. et al. Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc. Natl Acad. Sci. USA 111, 15705–15710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klaassen, C. D., Liu, J. & Diwan, B. A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharm. 238, 215–220 (2009).

    Article  CAS  Google Scholar 

  46. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl Acad. Sci. USA 103, 105–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Lokmic, Z., Musyoka, J., Hewitson, T. D. & Darby, I. A. Hypoxia and hypoxia signalling in tissue repair and fibrosis. Int. Rev. Cell. Mol. Biol. 296, 139–185 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Daugaard, M., Rohde, M. & Jaattela, M. The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 581, 3702–3710 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Yamaguchi, M., Ito, A., Ono, A., Kawabe, Y. & Kamihira, M. Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles. ACS Synth. Biol. 3, 273–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Yin, P. T. et al. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials 81, 46–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Nakatsuji, H. et al. Surface chemistry for cytosolic gene delivery and photothermal transgene expression by gold nanorods. Sci. Rep. 7, 4694 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gamboa, L. et al. Heat-triggered remote control of CRISPR-dCas9 for tunable transcriptional modulation. ACS Chem. Biol. 15, 533–542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muñoz-Sánchez, J. & Chánez-Cárdenas, M. E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 39, 556–570 (2019).

    Article  PubMed  Google Scholar 

  54. Fotakis, G., Cemeli, E., Anderson, D. & Timbrell, J. A. Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicol. In Vitro 19, 481–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Phuagkhaopong, S. et al. Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology 60, 82–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Rani, A., Kumar, A., Lal, A. & Pant, M. Cellular mechanisms of cadmium-induced toxicity: a review. Int. J. Environ. 24, 378–399 (2014).

    CAS  Google Scholar 

  57. Mitchell, R. J. & Gu, M. B. Construction and characterization of novel dual stress-responsive bacterial biosensors. Biosens. Bioelectron. 19, 977–985 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Elias, D. et al. Optimization of hyperthermic intraperitoneal chemotherapy with oxaliplatin plus irinotecan at 43 degrees C after compete cytoreductive surgery: mortality and morbidity in 106 consecutive patients. Ann. Surg. Oncol. 14, 1818–1824 (2007).

    Article  PubMed  Google Scholar 

  59. Yang, X. J. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann. Surg. Oncol. 18, 1575–1581 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127, 208–223 (2005).

    Article  PubMed  Google Scholar 

  61. Hellevik, T. & Martinez-Zubiaurre, I. Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front. Oncol. 4, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).

    Article  Google Scholar 

  64. von Maltzahn, G. et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009).

    Article  PubMed Central  Google Scholar 

  65. Mortier, E. et al. Soluble interleukin-15 receptor α (IL-15R α)-sushi as a selective and potent agonist of IL-15 action through IL-15R β/γ. Hyperagonist IL-15·IL-15Rα fusion proteins. J. Biol. Chem. 281, 1612–1619 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Robinson, T. O. & Schluns, K. S. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol. Lett. 190, 159–168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhode, P. R. et al. Comparison of the superagonist complex, ALT-803, to IL-15 as cancer immunotherapeutics in animal models. Cancer Immunol. Res. 4, 49–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Tomala, J., Chmelova, H., Mrkvan, T., Rihova, B. & Kovar, M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J. Immunol. 183, 4904–4912 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Watanabe, K., Kuramitsu, S., Posey, A. D. & June, C. H. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front. Immunol. 9, 2486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Parihar, R. et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol. Res. 7, 363–375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Steinbacher, J. et al. An Fc-optimized NKG2D-immunoglobulin G fusion protein for induction of natural killer cell reactivity against leukemia. Int. J. Cancer 136, 1073–1084 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Xia, Y. et al. Treatment with a fusion protein of the extracellular domains of NKG2D to IL-15 retards colon cancer growth in mice. J. Immunother. 37, 257–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Godbersen, C. et al. NKG2D ligand-targeted bispecific T-cell engagers lead to robust antitumor activity against diverse human tumors. Mol. Cancer Ther. 16, 1335–1346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Gamboa, L., Zamat, A. H. & Kwong, G. A. Synthetic immunity by remote control. Theranostics 10, 3652–3667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Henderson, T. A. & Morries, L. D. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr. Dis. Treat. 11, 2191–2208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. He, L. et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. Elife 4, e10024 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Kerkar, S. P. et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 70, 6725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. June, C. H. Remote controlled CARs: towards a safer therapy for leukemia. Cancer Immunol. Res. 4, 643 (2016).

    Article  PubMed  Google Scholar 

  87. Jethwa, P. R., Barrese, J. C., Gowda, A., Shetty, A. & Danish, S. F. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 71, 133–145 (2012).

    PubMed  Google Scholar 

  88. Rahmathulla, G. et al. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology 87, 67–82 (2014).

    Article  PubMed  Google Scholar 

  89. Shah, A. H. et al. The role of laser interstitial thermal therapy in surgical neuro-oncology: series of 100 consecutive patients. Neurosurgery 87, 266–275 (2020).

    Article  PubMed  Google Scholar 

  90. Bevilacqua, A., Fiorenza, M. T. & Mangia, F. A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation. Development 127, 1541–1551 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Ramirez, V. P., Stamatis, M., Shmukler, A. & Aneskievich, B. J. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions. Cell Stress Chaperones 20, 95–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Gaestel, M., Gotthardt, R. & Muller, T. Structure and organisation of a murine gene encoding small heat shock-protein Hsp25. Gene 128, 279–283 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Priceman, S. J. et al. Regional delivery of chimeric antigen receptor–engineered T cells effectively targets HER2+ breast cancer metastasis to the brain. Clin. Cancer Res. 24, 95 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Hwang, L. N., Yu, Z., Palmer, D. C. & Restifo, N. P. The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res. 66, 1132–1138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. M. Brockman for their helpful insights during planning and experiments; K. Roy (Georgia Institute of Technology) for the constitutive αCD19 CAR (US9499629B2), wild-type K562s and Raji cells; and Y. Chen for the CD19+ K562. This work was funded by the NIH Director’s New Innovator Award (DP2HD091793), the National Centre for Advancing Translational Sciences (UL1TR000454) and the Shurl and Kay Curci Foundation. I.C.M. was supported by the Georgia Tech TI:GER programme. L.G. was supported by the Alfred P. Sloan Foundation, the National Institutes of Health GT BioMAT Training Grant under Award No. 5T32EB006343 and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1451512. G.A.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542174). S.J.P. was supported by a STOP Cancer Foundation/Disrupt Seed and the Borstein Family Foundation for this work. This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

I.C.M. and G.A.K. conceived the idea. I.C.M., A.Z., L.K.S., H.P., L.G., J.P.M., S.J.P. and G.A.K. designed the experiments. I.C.M., A.Z., L.K.S., L.G., H.P., J.P.M., J.Y., S.J.P. and G.A.K interpreted the results. I.C.M., A.Z., L.K.S., H.P., A.M.H., J.P.M. and J.Y. performed the experiments. I.C.M., A.Z. and G.A.K. wrote the manuscript.

Corresponding author

Correspondence to Gabriel A. Kwong.

Ethics declarations

Competing interests

I.C.M., L.G., A.Z. and G.A.K. are listed as inventors on a patent application pertaining to the results of this paper (US20200299686A1 and application no. 63/214,761). G.A.K. is co-founder and consultant at Glympse Bio and consults for Satellite Bio. This study could affect his personal financial status. S.J.P. is a scientific advisor to and receives royalties from Mustang Bio and Imugene Ltd. The terms of this arrangement have been reviewed and approved by Georgia Tech in accordance with its conflict-of-interest policies.

Additional information

Peer review information Nature Biomedical Engineering thanks Sebastian Kobold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended data Fig. 1 Engineered Pmel-1 T cells enhance adoptive cell therapy in a high tumour burden setting.

a, Schematic representation of large tumour B16-F10 bearing C57BL/6 J mice upon systemic T cell transfer. b, Tumour-growth curves following inoculation of B16F10 following transfer of engineered murine T cells on day 0 and heat treatments on days 1, 3, and 5 (*P = 0.0489 between untreated and cohorts which received cells only on day 8. *P = 0.0295 between cohorts receiving cells and heat versus cells only on day 12, **P = 0.0043 between cohorts receiving cells and heat versus cells only on day 14, two-way ANOVA and Tukey post-test and correction, mean ± SEM is depicted, n = 6-7 biologically independent mice).

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Source data

Source data for Fig. 4

Source data for tumour burden.

Source data for Fig. 6

Source data for tumour burden.

Source data for Extended Data Fig. 1

Source data for tumour burden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, I.C., Zamat, A., Sun, LK. et al. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat Biomed Eng 5, 1348–1359 (2021). https://doi.org/10.1038/s41551-021-00781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00781-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research