Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke

Abstract

The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood–brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the BBB reconstructed in a microfluidic chip.
Fig. 2: Establishing ischaemia.
Fig. 3: Behaviours of neurons, BMECs and pericytes.
Fig. 4: Behaviours of astrocytes and microglia.
Fig. 5: Characterization of the neurorestorative potential of stem cells.
Fig. 6: Tracking the therapeutic stem cells.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request.

References

  1. Wang, Y. & Cai, Y. Obtaining human ischemic stroke gene expression biomarkers from animal models: a cross-species validation study. Sci. Rep. 6, 29693–29702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stonesifer, C. et al. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog. Neurobiol. 158, 94–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wechsler, L. R., Bates, D., Stroemer, P., Andrews-Zwilling, Y. S. & Aizman, I. Cell therapy for chronic stroke. Stroke 49, 1066–1074 (2018).

    Article  PubMed  Google Scholar 

  4. McGonigle, P. & Ruggeri, B. Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 87, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Savitz, S. I. et al. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke 45, 634–639 (2014).

    Article  PubMed  Google Scholar 

  6. Woodruff, T. M. et al. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 6, 11–29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Del Zoppo, G. The neurovascular unit in the setting of stroke. J. Intern. Med. 267, 156–171 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sivandzade, F. & Cucullo, L. In-vitro blood–brain barrier modeling: a review of modern and fast-advancing technologies. J. Cereb. Blood Flow. Metab. 38, 1667–1681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prabhakarpandian, B. et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13, 1093–1101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS ONE 11, e0150360 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wevers, N. R. et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15, 23 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grifno, G. N. et al. Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Sci. Rep. 9, 13957 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ahn, S. I. et al. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 11, 175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13, 1489–1500 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Soofi, S. S., Last, J. A., Liliensiek, S. J., Nealey, P. F. & Murphy, C. J. The elastic modulus of Matrigel™ as determined by atomic force microscopy. J. Struct. Biol. 167, 216–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Budday, S. et al. Mechanical characterization of human brain tissue. Acta Biomater. 48, 319–340 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Uemura, M. et al. Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell‐derived neural precursor cells. J. Neurosci. Res. 88, 542–551 (2010).

    CAS  PubMed  Google Scholar 

  18. Yu, Z. et al. Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death Dis. 9, 945–956 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nakagawa, S. et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54, 253–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Dejana, E. Endothelial cell–cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, C. S. & Leong, K. W. Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr. Opin. Biotechnol. 66, 78–87 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayhan, W. G. & Heistad, D. D. Permeability of blood-brain barrier to various sized molecules. Am. J. Physiol. 248, H712–H718 (1985).

    CAS  PubMed  Google Scholar 

  23. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Booth, R. & Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12, 1784–1792 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Papademetriou, I., Vedula, E., Charest, J. & Porter, T. Effect of flow on targeting and penetration of angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier. PLoS ONE 13, e0205158 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Walter, F. R. et al. A versatile lab-on-a-chip tool for modeling biological barriers. Sens. Actuators B 222, 1209–1219 (2016).

    Article  CAS  Google Scholar 

  27. Brown, J. A. et al. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, 054124 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Helms, H. C. et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow. Metab. 36, 862–890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeste, J. et al. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J. Phys. D Appl. Phys. 49, 375401 (2016).

    Article  CAS  Google Scholar 

  31. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hakim, A. M. Ischemic penumbra: the therapeutic window. Neurology 51, S44–S46 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Heiss, W.-D. et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J. Cereb. Blood Flow. Metab. 12, 193–203 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Stankowski, J. N. & Gupta, R. Therapeutic targets for neuroprotection in acute ischemic stroke: lost in translation? Antioxid. Redox Signal. 14, 1841–1851 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, L., Shah, K. K. & Abbruscato, T. J. An in vitro model of ischemic stroke. Methods Mol. Biol. 814, 451–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, H. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr. Med. Chem. 16, 4593–4600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mattson, M. P., Culmsee, C. & Yu, Z. F. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 301, 173–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Bereczki, J., Balla, J. & Bereczki, D. Heme oxygenase-1: clinical relevance in ischemic stroke. Curr. Pharm. Des. 24, 2229–2235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boshuizen, M. C. & Steinberg, G. K. Stem cell–based immunomodulation after stroke: effects on brain repair processes. Stroke 49, 1563–1570 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jin, R., Yang, G. & Li, G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 87, 779–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, J. S., Bateman, M. C. & Goldberg, M. P. Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol. Dis. 3, 215–227 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Schmued, L. C., Albertson, C. & Slikker, W. Jr. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 751, 37–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Besse, A. et al. Personalized medicine approach confirms a milder case of ABAT deficiency. Mol. Brain 9, 93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Okaty, B. W., Miller, M. N., Sugino, K., Hempel, C. M. & Nelson, S. B. Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J. Neurosci. 29, 7040–7052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai, T. W., Zhang, S. & Wang, Y. T. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115, 157–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Cameron, M. et al. Calcium imaging of AM dyes following prolonged incubation in acute neuronal tissue. PLoS ONE 11, e0155468 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Marambaud, P., Dreses-Werringloer, U. & Vingtdeux, V. Calcium signaling in neurodegeneration. Mol. Neurodegener. 4, 20 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sneyd, J. et al. On the dynamical structure of calcium oscillations. Proc. Natl Acad. Sci. USA 114, 1456–1461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arundine, M. & Tymianski, M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34, 325–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Weksler, B. et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19, 1872–1874 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Tornavaca, O. et al. ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. J. Cell Biol. 208, 821–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mathiu, O., van der Meer, A. D., JungáKim, H., van der Helm, M. W. & den Berg, A. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Lab Chip 15, 745–752 (2015).

    Article  CAS  Google Scholar 

  54. Talwar, T. & Srivastava, M. V. P. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Ann. Indian Acad. Neurol. 17, 1–6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sandoval, K. E. & Witt, K. A. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 32, 200–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Carlos, T., Clark, R., Franicola-Higgins, D., Schiding, J. & Kochanek, P. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J. Leukoc. Biol. 61, 279–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. DeStefano, J. G., Xu, Z. S., Williams, A. J., Yimam, N. & Searson, P. C. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS 14, 20–34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Colgan, O. C. et al. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. 292, 3190–3197 (2007).

    Google Scholar 

  59. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5, 32 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sá-Pereira, I., Brites, D. & Brito, M. A. Neurovascular unit: a focus on pericytes. Mol. Neurobiol. 45, 327–347 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Papadopoulos, M. C. & Verkman, A. S. Aquaporin-4 and brain edema. Pediatr. Nephrol. 22, 778–784 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kimelberg, H. K. & Nedergaard, M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7, 338–353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  67. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Guruswamy, R. & ElAli, A. Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int. J. Mol. Sci. 18, 496–511 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  69. Taib, T. et al. Neuroinflammation, myelin and behavior: temporal patterns following mild traumatic brain injury in mice. PLoS ONE 12, e0184811 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Matt, S. M., Lawson, M. A. & Johnson, R. W. Aging and peripheral lipopolysaccharide can modulate epigenetic regulators and decrease IL-1β promoter DNA methylation in microglia. Neurobiol. Aging 47, 1–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jalland, C. M. et al. Neil3 induced neurogenesis protects against prion disease during the clinical phase. Sci. Rep. 6, 37844–37852 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patel, A. R., Ritzel, R., McCullough, L. D. & Liu, F. Microglia and ischemic stroke: a double-edged sword. Int. J. Physiol. Pathophysiol. Pharmacol. 5, 73–90 (2013).

    PubMed  PubMed Central  Google Scholar 

  73. Walker, D. G. & Lue, L.-F. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 7, 56–64 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Picascia, A., Grimaldi, V., Iannone, C., Soricelli, A. & Napoli, C. Innate and adaptive immune response in stroke: focus on epigenetic regulation. J. Neuroimmunol. 289, 111–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11, 201–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oliveira, A., Illes, P. & Ulrich, H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 104, 272–281 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Marei, H. E. M. Potential of stem cell-based therapy for ischemic stroke. Front. Neurol. 9, 34–40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Szklarczyk, D. et al. Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Naylor, A. J. et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE 9, e107146 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sun, J. & Nan, G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J. Mol. Neurosci. 59, 90–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Janowski, M., Wagner, D.-C. & Boltze, J. Stem cell–based tissue replacement after stroke: factual necessity or notorious fiction? Stroke 46, 2354–2363 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ohab, J. J. & Carmichael, S. T. Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 14, 369–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Campisi, M. et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180, 117–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brown, J. A. et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 13, 306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sances, S. et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep. 10, 1222–1236 (2018).

    Article  CAS  Google Scholar 

  89. Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, L., Nirwane, A. & Yao, Y. Basement membrane and blood–brain barrier. Stroke Vasc. Neurol. 4, 78–82 (2019).

    Article  PubMed  Google Scholar 

  91. Eddington, D. T., Puccinelli, J. P. & Beebe, D. J. Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators B 114, 170–172 (2006).

    Article  CAS  Google Scholar 

  92. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R. & Fleming, R. M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Ma, X. et al. Injection molding and characterization of PMMA-based microfluidic devices. Microsyst. Technol. 26, 1317–1324 (2020).

    Article  CAS  Google Scholar 

  94. Daadi, M. M., Maag, A.-L. & Steinberg, G. K. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE 3, e1644 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Offner, H., Vandenbark, A. & Hurn, P. D. Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience 158, 1098–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Ajami, N. E. et al. Systems biology analysis of longitudinal functional response of endothelial cells to shear stress. Proc. Natl Acad. Sci. USA 114, 10990–10995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, C., Baker, B. M., Chen, C. S. & Schwartz, M. A. Endothelial cell sensing of flow direction. Arterioscler. Thromb. Vasc. Biol. 33, 2130–2136 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, Y. I. & Shuler, M. L. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip 18, 2563–2574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rikhtegar, R. et al. Stem cell-based cell therapy for neuroprotection in stroke: a review. J. Cell. Biochem. 120, 8849–8862 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Huertas-Vazquez, A., Leon-Mimila, P. & Wang, J. Relevance of multi-omics studies in cardiovascular diseases. Front. Cardiovasc. Med. 6, 91 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mi, S., Du, Z., Xu, Y. & Sun, W. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. J. Mater. Chem. B 6, 6191–6206 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. von Bartheld, C. S., Bahney, J. & Herculano‐Houzel, S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    Article  Google Scholar 

  103. Dore-Duffy, P. et al. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Luissint, A.-C., Artus, C., Glacial, F., Ganeshamoorthy, K. & Couraud, P.-O. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9, 23 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vormann, M. K. et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 20, 90 (2018).

    Article  PubMed  CAS  Google Scholar 

  106. Curry, F., Huxley, V. & Adamson, R. Permeability of single capillaries to intermediate-sized colored solutes. Am. J. Physiol. 245, H495–H505 (1983).

    CAS  PubMed  Google Scholar 

  107. Haase, K., Gillrie, M. R., Hajal, C. & Kamm, R. D. Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF‐Ang‐Tie2 signaling. Adv. Sci. 6, 1900878 (2019).

    Article  CAS  Google Scholar 

  108. Shin, Y. et al. Blood–brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv. Sci. 6, 1900962 (2019).

    Article  CAS  Google Scholar 

  109. Lee, S. W. L. et al. Modeling nanocarrier transport across a 3D in vitro human blood‐brain–barrier microvasculature. Adv. Healthc. Mater. 9, e1901486 (2020).

    Article  PubMed  CAS  Google Scholar 

  110. Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198, 180–193 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Rodríguez-Frutos, B. et al. Stem cell therapy and administration routes after stroke. Transl. Stroke Res. 7, 378–387 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Suh for editing the manuscript; and T. Klein, J. Saunders and S. Saunders for their support. W.L. was supported by NIH National Center for Advancing Translational Science Clinical and Translational Science Award at the Stanford Child Health Research Institute (UL1 TR001085) and NIH National Cancer Institute career development award (K25CA201545).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and K.-M.K. designed and performed the experiments, and analysed and interpreted the data; J.P. designed experiment; H.-J.J. and H.W. performed the experiments; W.L. conceived and supervised the project, designed and performed experiments, and analysed and interpreted the data. The manuscript was mainly written by W.L. with contributions from all of the authors.

Corresponding author

Correspondence to Wonjae Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Z., Park, J., Kim, KM. et al. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng 5, 847–863 (2021). https://doi.org/10.1038/s41551-021-00744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00744-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research