Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The kinetics of metal oxide photoanodes from charge generation to catalysis

Abstract

Generating charge carriers with lifetimes long enough to drive catalysis is a critical aspect for photoelectrochemical and photocatalytic systems, and a key determinant of their efficiency. Metal oxides are widely explored as photoanodes for photoelectrochemical water oxidation. However, their application is limited by the disparity between the picosecond–nanosecond lifetimes of electrons and holes photoexcited in bulk metal oxides versus the millisecond–second timescale of water oxidation catalysis. This Review addresses the charge-carrier dynamics underlying the performance of metal oxide photoanodes and their ability to drive photoelectrochemical water oxidation, alongside comparison with metal oxide function in photocatalytic and electrocatalytic systems. We assess the dominant kinetic processes determining photoanode performance, namely, charge generation, polaron formation and charge trapping, bulk and surface recombination, charge separation and extraction, and, finally, the kinetics of water oxidation catalysis. We examine approaches to enhance performance, including material selection, doping, nanostructuring, junction formation and/or co-catalyst deposition. Crucially, we examine how such performance enhancements can be understood from analyses of carrier dynamics and propose design guidelines for further material or device optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timescales of charge-carrier dynamics in metal oxide photoanodes.
Fig. 2: Carrier movement in the bulk.
Fig. 3: Carrier movement at the surface.
Fig. 4: Solid-state junctions.
Fig. 5: Kinetic models for water oxidation catalysis.

Similar content being viewed by others

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  2. Boddy, P. J. Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 115, 199 (1968).

    Article  CAS  Google Scholar 

  3. Ahmed, B., Kumar, S., Ojha, A. K., Donfack, P. & Materny, A. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim. Acta A Mol. Biomol. Spectrosc. 175, 250–261 (2017).

    Article  CAS  Google Scholar 

  4. Huang, Z.-F., Pan, L., Zou, J.-J., Zhang, X. & Wang, L. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6, 14044–14063 (2014).

    Article  CAS  Google Scholar 

  5. Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarska, R. & Augustynski, J. Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008).

    Article  CAS  Google Scholar 

  6. Huang, Z. F. et al. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 5309–5327 (2015).

    Article  CAS  Google Scholar 

  7. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  8. Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).

    Article  Google Scholar 

  9. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  Google Scholar 

  10. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  11. Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).

    Article  CAS  Google Scholar 

  12. Bignozzi, C. A. et al. Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem. Soc. Rev. 42, 2228–2246 (2013).

    Article  CAS  Google Scholar 

  13. Niklasson, G. A. & Granqvist, C. G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156 (2007).

    Article  CAS  Google Scholar 

  14. Deb, S. K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cell 92, 245–258 (2008).

    Article  CAS  Google Scholar 

  15. Granqvist, C.-G. Electrochromic materials: out of a niche. Nat. Mater. 5, 89–90 (2006).

    Article  CAS  Google Scholar 

  16. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  Google Scholar 

  17. Corby, S. et al. Charge separation, band-bending, and recombination in WO3 photoanodes. J. Phys. Chem. Lett. 10, 5395–5401 (2019).

    Article  CAS  Google Scholar 

  18. Corby, S. et al. Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J. Am. Chem. Soc. 140, 16168–16177 (2018).

    Article  CAS  Google Scholar 

  19. Corby, S., Francàs, L., Kafizas, A. & Durrant, J. R. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation. Chem. Sci. 11, 2907–2914 (2020).

    Article  CAS  Google Scholar 

  20. Pastor, E. et al. In situ observation of picosecond polaron self-localisation in α-Fe2O3 photoelectrochemical cells. Nat. Commun. 10, 3962 (2019).

    Article  Google Scholar 

  21. Cowan, A. J. & Durrant, J. R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 42, 2281–2293 (2013).

    Article  CAS  Google Scholar 

  22. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    Article  CAS  Google Scholar 

  23. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  Google Scholar 

  24. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    Article  CAS  Google Scholar 

  25. Pan, L. et al. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018).

    Article  CAS  Google Scholar 

  26. Sivula, K., Formal, F. L. & Grätzel, M. WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009).

    Article  CAS  Google Scholar 

  27. Maeda, K. & Domen, K. Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem. Mater. 22, 612–623 (2010).

    Article  CAS  Google Scholar 

  28. Tilley, S. D., Cornuz, M., Sivula, K. & Grätzel, M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 122, 6549–6552 (2010).

    Article  Google Scholar 

  29. Na, J. et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 10, 5193 (2019).

    Article  Google Scholar 

  30. Vass, Á., Endrődi, B. & Janáky, C. Coupling electrochemical carbon dioxide conversion with value-added anode processes: an emerging paradigm. Curr. Opin. Electrochem. 25, 100621 (2020).

    Article  Google Scholar 

  31. Hunter, B. M., Gray, H. B. & Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016).

    Article  CAS  Google Scholar 

  32. Park, Y., McDonald, K. J. & Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  CAS  Google Scholar 

  33. Seo, J., Nishiyama, H., Yamada, T. & Domen, K. Visible-light-responsive photoanodes for highly active, stable water oxidation. Angew. Chem. Int. Ed. 57, 8396–8415 (2018).

    Article  CAS  Google Scholar 

  34. Singh, A. & Spiccia, L. Water oxidation catalysts based on abundant 1st row transition metals. Coord. Chem. Rev. 257, 2607–2622 (2013).

    Article  CAS  Google Scholar 

  35. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  36. Sachs, M., Pastor, E., Kafizas, A. & Durrant, J. R. Evaluation of surface state mediated charge recombination in anatase and rutile TiO2. J. Phys. Chem. Lett. 7, 3742–3746 (2016).

    Article  CAS  Google Scholar 

  37. Baldini, E. et al. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nat. Commun. 8, 13 (2017).

    Article  CAS  Google Scholar 

  38. Baldini, E. et al. Exciton control in a room temperature bulk semiconductor with coherent strain pulses. Sci. Adv. 5, eaax2937 (2019).

    Article  CAS  Google Scholar 

  39. Benson, E., Fortin, E. & Mysyrowicz, A. Study of anomalous excitonic transport in Cu2O. Phys. Status Solidi 191, 345–367 (1995).

    Article  CAS  Google Scholar 

  40. Omelchenko, S. T., Tolstova, Y., Atwater, H. A. & Lewis, N. S. Excitonic effects in emerging photovoltaic materials: a case study in Cu2O. ACS Energy Lett. 2, 431–437 (2017).

    Article  CAS  Google Scholar 

  41. Abdi, F. F. & van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398–9404 (2012).

    Article  CAS  Google Scholar 

  42. Wang, G., Ling, Y. & Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682–6691 (2012).

    Article  CAS  Google Scholar 

  43. Segev, G. et al. High solar flux concentration water splitting with hematite (α-Fe2O3) photoanodes. Adv. Energy Mater. 6, 1500817 (2016).

    Article  Google Scholar 

  44. Bassi, P. S. et al. Crystalline Fe2O3/Fe2TiO5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy 22, 310–318 (2016).

    Article  CAS  Google Scholar 

  45. Katoh, R., Murai, M. & Furube, A. Electron–hole recombination in the bulk of a rutile TiO2 single crystal studied by sub-nanosecond transient absorption spectroscopy. Chem. Phys. Lett. 461, 238–241 (2008).

    Article  CAS  Google Scholar 

  46. Davies, D. W. et al. Descriptors for electron and hole charge carriers in metal oxides. J. Phys. Chem. Lett. 11, 438–444 (2020).

    Article  CAS  Google Scholar 

  47. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009).

    Article  CAS  Google Scholar 

  48. Sato, J., Kobayashi, H., Saito, N., Nishiyama, H. & Inoue, Y. Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A=Li, Na) with d10 configuration. J. Photochem. Photobiol. A Chem. 158, 139–144 (2003).

    Article  CAS  Google Scholar 

  49. Walsh, A., Sokol, A. A., Buckeridge, J., Scanlon, D. O. & Catlow, C. R. A. Electron counting in solids: oxidation states, partial charges, and ionicity. J. Phys. Chem. Lett. 8, 2074–2075 (2017).

    Article  CAS  Google Scholar 

  50. Wang, J. et al. Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy 53, 144–151 (2018).

    Article  CAS  Google Scholar 

  51. Ruhle, S. et al. All-oxide photovoltaics. J. Phys. Chem. Lett. 3, 3755–3764 (2012).

    Article  CAS  Google Scholar 

  52. Turner, G. M., Beard, M. C. & Schmuttenmaer, C. A. Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J. Phys. Chem. B 106, 11716–11719 (2002).

    Article  CAS  Google Scholar 

  53. Jiang, C.-M. et al. Characterization of photo-induced charge transfer and hot carrier relaxation pathways in spinel cobalt oxide (Co3O4). J. Phys. Chem. C 118, 22774–22784 (2014).

    Article  CAS  Google Scholar 

  54. Husek, J., Cirri, A., Biswas, S. & Baker, L. R. Surface electron dynamics in hematite (α-Fe2O3): correlation between ultrafast surface electron trapping and small polaron formation. Chem. Sci. 8, 8170–8178 (2017).

    Article  CAS  Google Scholar 

  55. Ziwritsch, M. et al. Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4. ACS Energy Lett. 1, 888–894 (2016).

    Article  CAS  Google Scholar 

  56. Chen, C., Avila, J., Frantzeskakis, E., Levy, A. & Asensio, M. C. Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015).

    Article  CAS  Google Scholar 

  57. Santomauro, F. G. et al. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2. Sci. Rep. 5, 14834 (2015).

    Article  CAS  Google Scholar 

  58. Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017).

    Article  CAS  Google Scholar 

  59. Selim, S. et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. J. Am. Chem. Soc. 141, 18791–18798 (2019).

    Article  CAS  Google Scholar 

  60. Greiner, M. T., Chai, L., Helander, M. G., Tang, W.-M. & Lu, Z.-H. Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 22, 4557–4568 (2012).

    Article  CAS  Google Scholar 

  61. Gerosa, M., Gygi, F., Govoni, M. & Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 17, 1122–1127 (2018).

    Article  CAS  Google Scholar 

  62. Emin, D., Seager, C. H. & Quinn, R. K. Small-polaron hopping motion in some chalcogenide glasses. Phys. Rev. Lett. 28, 813–816 (1972).

    Article  CAS  Google Scholar 

  63. Rettie, A. J. E., Chemelewski, W. D., Emin, D. & Mullins, C. B. Unravelling small-polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett. 7, 471–479 (2016).

    Article  CAS  Google Scholar 

  64. Li, J. & Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360–1384 (2015).

    Article  CAS  Google Scholar 

  65. Makino, T., Segawa, Y., Tsukazaki, A., Ohtomo, A. & Kawasaki, M. Electron transport in ZnO thin films. Appl. Phys. Lett. 87, 022101 (2005).

    Article  Google Scholar 

  66. Yang, L. et al. Mo6+ doped BiVO4 with improved charge separation and oxidation kinetics for photoelectrochemical water splitting. Electrochim. Acta 256, 268–277 (2017).

    Article  CAS  Google Scholar 

  67. Cesar, I., Sivula, K., Kay, A., Zboril, R. & Grätzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772–782 (2009).

    Article  CAS  Google Scholar 

  68. Murthy, D. H. K. et al. Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts. Sustain. Energy Fuels 3, 208–218 (2019).

    Article  CAS  Google Scholar 

  69. Yamakata, A., Kawaguchi, M., Murachi, R., Okawa, M. & Kamiya, I. Dynamics of photogenerated charge carriers on Ni- and Ta-doped SrTiO3 photocatalysts studied by time-resolved absorption and emission spectroscopy. J. Phys. Chem. C 120, 7997–8004 (2016).

    Article  CAS  Google Scholar 

  70. Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J. & Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216–5224 (2017).

    Article  CAS  Google Scholar 

  71. Tang, J., Cowan, A. J., Durrant, J. R. & Klug, D. R. Mechanism of O2 production from water splitting: nature of charge carriers in nitrogen doped nanocrystalline TiO2 films and factors limiting O2 production. J. Phys. Chem. C 115, 3143–3150 (2011).

    Article  CAS  Google Scholar 

  72. Barroso, M., Pendlebury, S. R., Cowan, A. J. & Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013).

    Article  CAS  Google Scholar 

  73. Yang, W. et al. Electron accumulation induces efficiency bottleneck for hydrogen production in carbon nitride photocatalysts. J. Am. Chem. Soc. 141, 11219–11229 (2019).

    Article  CAS  Google Scholar 

  74. Steier, L. et al. Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv. Funct. Mater. 24, 7681–7688 (2014).

    Article  CAS  Google Scholar 

  75. Zhang, Z., Nagashima, H. & Tachikawa, T. Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angew. Chem. Int. Ed. 59, 9047–9054 (2020).

    Article  CAS  Google Scholar 

  76. Li, J. et al. Photoelectrochemical performance enhanced by a nickel oxide–hematite p–n junction photoanode. Chem. Commun. 48, 8213–8215 (2012).

    Article  CAS  Google Scholar 

  77. Meng, X. Y. et al. Enhanced photoelectrochemical activity for Cu and Ti doped hematite: the first principles calculations. Appl. Phys. Lett. 98, 112104 (2011).

    Article  Google Scholar 

  78. Zandi, O. & Hamann, T. W. The potential versus current state of water splitting with hematite. Phys. Chem. Chem. Phys. 17, 22485–22503 (2015).

    Article  CAS  Google Scholar 

  79. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  Google Scholar 

  80. Moss, B. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021).

    Article  CAS  Google Scholar 

  81. Steier, L. et al. Low-temperature atomic layer deposition of crystalline and photoactive ultrathin hematite films for solar water splitting. ACS Nano 9, 11775–11783 (2015).

    Article  CAS  Google Scholar 

  82. Rettie, A. J. E. et al. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135, 11389–11396 (2013).

    Article  CAS  Google Scholar 

  83. Seabold, J. A., Zhu, K. & Neale, N. R. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. Phys. Chem. Chem. Phys. 16, 1121–1131 (2014).

    Article  CAS  Google Scholar 

  84. Abdi, F. F., Savenije, T. J., May, M. M., Dam, B. & van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013).

    Article  CAS  Google Scholar 

  85. Ravensbergen, J. et al. Unraveling the carrier dynamics of BiVO4: a femtosecond to microsecond transient absorption study. J. Phys. Chem. C 118, 27793–27800 (2014).

    Article  CAS  Google Scholar 

  86. Grigioni, I., Stamplecoskie, K. G., Selli, E. & Kamat, P. V. Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J. Phys. Chem. C 119, 20792–20800 (2015).

    Article  CAS  Google Scholar 

  87. Butler, K. T. et al. Ultrafast carrier dynamics in BiVO4 thin film photoanode material: interplay between free carriers, trapped carriers and low-frequency lattice vibrations. J. Mater. Chem. A 4, 18516–18523 (2016).

    Article  CAS  Google Scholar 

  88. Moss, B. et al. Anisotropic electron transport limits performance of Bi2WO6 photoanodes. J. Phys. Chem. C 124, 18859–18867 (2020).

    Article  CAS  Google Scholar 

  89. Zhu, J. et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. Int. Ed. 127, 9239–9242 (2015).

    Article  Google Scholar 

  90. Chen, S., Thind, S. S. & Chen, A. Nanostructured materials for water splitting-state of the art and future needs: a mini-review. Electrochem. Commun. 63, 10–17 (2016).

    Article  CAS  Google Scholar 

  91. Lee, M. G. et al. Solution-processed metal oxide thin film nanostructures for water splitting photoelectrodes: a review. J. Korean Ceram. Soc. 55, 185–202 (2018).

    Article  CAS  Google Scholar 

  92. Concina, I., Ibupoto, Z. H. & Vomiero, A. Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy Mater. 7, 1700706 (2017).

    Article  Google Scholar 

  93. Zhang, W. & Zhou, K. Ultrathin two‐dimensional nanostructured materials for highly efficient water oxidation. Small 13, 1700806 (2017).

    Article  Google Scholar 

  94. Tamirat, A. G., Rick, J., Dubale, A. A., Su, W.-N. & Hwang, B.-J. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz. 1, 243–267 (2016).

    Article  CAS  Google Scholar 

  95. Brillet, J. et al. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6, 824–828 (2012).

    Article  CAS  Google Scholar 

  96. Gurudayal, et al. Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett. 15, 3833–3839 (2015).

    Article  CAS  Google Scholar 

  97. Cherepy, N. J., Liston, D. B., Lovejoy, J. A., Deng, H. & Zhang, J. Z. Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B 102, 770–776 (1998).

    Article  CAS  Google Scholar 

  98. Pendlebury, S. R. et al. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 136, 9854–9857 (2014).

    Article  CAS  Google Scholar 

  99. Cendula, P., Steier, L., Losio, P. A., Grätzel, M. & Schumacher, J. O. Analysis of optical losses in a photoelectrochemical cell: a tool for precise absorptance estimation. Adv. Funct. Mater. 28, 1702768 (2018).

    Article  Google Scholar 

  100. Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article  CAS  Google Scholar 

  101. Ham, Y. et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. J. Mater. Chem. A 4, 3027–3033 (2016).

    Article  CAS  Google Scholar 

  102. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  Google Scholar 

  103. Gerischer, H. Electrochemical photo and solar cells principles and some experiments. J. Electroanal. Chem. Interfacial Electrochem. 58, 263–274 (1975).

    Article  CAS  Google Scholar 

  104. Gerischer, H. Electrochemical behavior of semiconductors under illumination. J. Electrochem. Soc. 113, 1174 (1966).

    Article  CAS  Google Scholar 

  105. Ma, Y., Pendlebury, S. R., Reynal, A., Le Formal, F. & Durrant, J. R. Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem. Sci. 5, 2964–2973 (2014).

    Article  CAS  Google Scholar 

  106. Cowan, A. J., Tang, J., Leng, W., Durrant, J. R. & Klug, D. R. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114, 4208–4214 (2010).

    Article  CAS  Google Scholar 

  107. Upul Wijayantha, K. G., Saremi-Yarahmadi, S. & Peter, L. M. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 5264–5270 (2011).

    Article  CAS  Google Scholar 

  108. Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  109. Pendlebury, S. R. et al. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 6304–6312 (2012).

    Article  CAS  Google Scholar 

  110. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  111. Ma, Y. et al. Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode. ACS Energy Lett. 1, 618–623 (2016).

    Article  CAS  Google Scholar 

  112. Dotan, H., Sivula, K., Gratzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011).

    Article  CAS  Google Scholar 

  113. Chen, X., Aschaffenburg, D. & Cuk, T. One-electron intermediates of water oxidation & the role of solvation in their stability. J. Mater. Chem. A 5, 11410–11417 (2017).

    Article  CAS  Google Scholar 

  114. Chen, X. et al. The formation time of Ti–O and Ti–O–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).

    Article  CAS  Google Scholar 

  115. Herlihy, D. M. et al. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8, 549–555 (2016).

    Article  CAS  Google Scholar 

  116. Ahmed, S., Leduc, J. & Haller, S. Photoelectrochemical and impedance characteristics of specular hematite. 1. Photoelectrochemical parallel conductance, and trap rate studies. J. Phys. Chem. 92, 6655–6660 (1988).

    Article  CAS  Google Scholar 

  117. Glasscock, J. A., Barnes, P. R. F., Plumb, I. C. & Savvides, N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477–16488 (2007).

    Article  CAS  Google Scholar 

  118. Le Formal, F., Sivula, K. & Grätzel, M. The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J. Phys. Chem. C 116, 26707–26720 (2012).

    Article  Google Scholar 

  119. Le Formal, F. et al. Back electron–hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136, 2564–2574 (2014).

    Article  Google Scholar 

  120. Ma, Y., Le Formal, F., Kafizas, A., Pendlebury, S. R. & Durrant, J. R. Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. J. Mater. Chem. A 3, 20649–20657 (2015).

    Article  CAS  Google Scholar 

  121. Kafizas, A., Godin, R. & Durrant, J. R. in Semiconductors and Semimetals Vol. 97 (eds Mi, Z., Wang, L., & Jagadish, C.) 3–46 (Elsevier, 2017).

  122. Peter, L. M., Wijayantha, K. G. U. & Tahir, A. A. Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss. 155, 309–322 (2012).

    Article  CAS  Google Scholar 

  123. Kafizas, A. et al. Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: a rate law analysis. ACS Catal. 7, 4896–4903 (2017).

    Article  CAS  Google Scholar 

  124. Zandi, O. & Hamann, T. W. Enhanced water splitting efficiency through selective surface state removal. J. Phys. Chem. Lett. 5, 1522–1526 (2014).

    Article  CAS  Google Scholar 

  125. Liu, R., Zheng, Z., Spurgeon, J. & Yang, X. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517 (2014).

    Article  CAS  Google Scholar 

  126. Zhang, P., Wang, T. & Gong, J. Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation. Chem. Commun. 52, 8806–8809 (2016).

    Article  CAS  Google Scholar 

  127. Le Formal, F. et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011).

    Article  Google Scholar 

  128. Ding, T. X., Olshansky, J. H., Leone, S. R. & Alivisatos, A. P. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 137, 2021–2029 (2015).

    Article  CAS  Google Scholar 

  129. Olshansky, J. H., Ding, T. X., Lee, Y. V., Leone, S. R. & Alivisatos, A. P. Hole transfer from photoexcited quantum dots: the relationship between driving force and rate. J. Am. Chem. Soc. 137, 15567–15575 (2015).

    Article  CAS  Google Scholar 

  130. Smith, A. M. & Nie, S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010).

    Article  CAS  Google Scholar 

  131. Zawadzki, P., Laursen, A. B., Jacobsen, K. W., Dahl, S. & Rossmeisl, J. Oxidative trends of TiO2 — hole trapping at anatase and rutile surfaces. Energy Environ. Sci. 5, 9866–9869 (2012).

    Article  CAS  Google Scholar 

  132. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T. & Bisquert, J. Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012).

    Article  CAS  Google Scholar 

  133. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012).

    Article  CAS  Google Scholar 

  134. Shi, Q. et al. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catal. 8, 3331–3342 (2018).

    Article  CAS  Google Scholar 

  135. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  CAS  Google Scholar 

  136. Sudhagar, P., Devadoss, A., Nakata, K., Terashima, C. & Fujishima, A. Enhanced photoelectrocatalytic water splitting at hierarchical Gd3+:TiO2 nanostructures through amplifying light reception and surface states passivation. J. Electrochem. Soc. 162, H108–H114 (2014).

    Article  Google Scholar 

  137. Peter, L. M. Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753–769 (1990).

    Article  CAS  Google Scholar 

  138. Colombo, D. P. & Bowman, R. M. Femtosecond diffuse reflectance spectroscopy of TiO2 powders. J. Phys. Chem. 99, 11752–11756 (1995).

    Article  CAS  Google Scholar 

  139. Leng, W. H., Zhang, Z., Zhang, J. Q. & Cao, C. N. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 109, 15008–15023 (2005).

    Article  CAS  Google Scholar 

  140. Gomes, W. P. & Vanmaekelbergh, D. Impedance spectroscopy at semiconductor electrodes: review and recent developments. Electrochim. Acta 41, 967–973 (1996).

    Article  CAS  Google Scholar 

  141. Gomes, W. P. & Cardon, F. Surface states at the single crystal zinc oxide/electrolyte interface. I. Impedance measurements. Ber. Bunsenges. Phys. Chem. 74, 431–436 (1970).

    CAS  Google Scholar 

  142. Cardon, F. Impedance- and noise-spectrum calculation for a semiconductor-electrolyte interface with electron transfer through surface states. Physica 57, 390–396 (1972).

    Article  CAS  Google Scholar 

  143. Bertoluzzi, L., Lopez-Varo, P., Jiménez Tejada, J. A. & Bisquert, J. Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy. J. Mater. Chem. A 4, 2873–2879 (2016).

    Article  CAS  Google Scholar 

  144. Klahr, B. & Hamann, T. Water oxidation on hematite photoelectrodes: insight into the nature of surface states through in situ spectroelectrochemistry. J. Phys. Chem. C 118, 10393–10399 (2014).

    Article  CAS  Google Scholar 

  145. Wang, X. et al. Transient absorption spectroscopy of anatase and rutile: the impact of morphology and phase on photocatalytic activity. J. Phys. Chem. C 119, 10439–10447 (2015).

    Article  CAS  Google Scholar 

  146. Gao, Y. & Hamann, T. W. Elucidation of CuWO4 surface states during photoelectrochemical water oxidation. J. Phys. Chem. Lett. 8, 2700–2704 (2017).

    Article  CAS  Google Scholar 

  147. Morris, M. R., Pendlebury, S. R., Hong, J., Dunn, S. & Durrant, J. R. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv. Mater. 28, 7123–7128 (2016).

    Article  CAS  Google Scholar 

  148. Mu, L. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 9, 2463–2469 (2016).

    Article  CAS  Google Scholar 

  149. Zhang, J., Xu, Q., Feng, Z., Li, M. & Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 120, 1790–1793 (2008).

    Article  Google Scholar 

  150. Li, R. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432 (2013).

    Article  Google Scholar 

  151. Liu, L. et al. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 32, 1907604 (2020).

    Article  CAS  Google Scholar 

  152. Liu, Y. et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 32, e1906513 (2020).

    Article  Google Scholar 

  153. Li, Z. et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew. Chem. Int. Ed. 59, 935–942 (2020).

    Article  CAS  Google Scholar 

  154. Lin, Y. et al. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012).

    Article  CAS  Google Scholar 

  155. Ahmed, M. G. et al. A facile surface passivation of hematite photoanodes with TiO2 overlayers for efficient solar water splitting. ACS Appl. Mater. Interfaces 7, 24053–24062 (2015).

    Article  CAS  Google Scholar 

  156. Hisatomi, T. et al. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 4, 2512–2515 (2011).

    Article  CAS  Google Scholar 

  157. Scanlon, D. O. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013).

    Article  CAS  Google Scholar 

  158. Kafizas, A. et al. Where do photogenerated holes go in anatase:rutile TiO2? A transient absorption spectroscopy study of charge transfer and lifetime. J. Phys. Chem. A 120, 715–723 (2016).

    Article  CAS  Google Scholar 

  159. Li, A. et al. Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 7, 6076–6082 (2016).

    Article  CAS  Google Scholar 

  160. Selim, S. et al. WO3/BiVO4: impact of charge separation at the timescale of water oxidation. Chem. Sci. 10, 2643–2652 (2019).

    Article  CAS  Google Scholar 

  161. Chae, S. Y. et al. Insight into charge separation in WO3/BiVO4 heterojunction for solar water splitting. ACS Appl. Mater. Interfaces 9, 19780–19790 (2017).

    Article  CAS  Google Scholar 

  162. Kalanoor, B. S., Seo, H. & Kalanur, S. S. Recent developments in photoelectrochemical water-splitting using WO3/BiVO4 heterojunction photoanode: a review. Mater. Sci. Energy Technol. 1, 49–62 (2018).

    Google Scholar 

  163. Grigioni, I. et al. In operando photoelectrochemical femtosecond transient absorption spectroscopy of WO3/BiVO4 heterojunctions. ACS Energy Lett. 4, 2213–2219 (2019).

    Article  CAS  Google Scholar 

  164. Ye, K.-H. et al. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 10, 3687 (2019).

    Article  Google Scholar 

  165. Seabold, J. A. & Choi, K.-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011).

    Article  CAS  Google Scholar 

  166. Zhong, D. K. & Gamelin, D. R. Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202–4207 (2010).

    Article  CAS  Google Scholar 

  167. Lin, F. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014).

    Article  CAS  Google Scholar 

  168. Barroso, M. et al. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 14868–14871 (2011).

    Article  CAS  Google Scholar 

  169. Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    Article  CAS  Google Scholar 

  170. Peter, L. M. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J. Solid. State Electrochem. 17, 315–326 (2012).

    Article  Google Scholar 

  171. Seabold, J. A. & Choi, K.-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186–2192 (2012).

    Article  CAS  Google Scholar 

  172. Ye, H., Park, H. S. & Bard, A. J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115, 12464–12470 (2011).

    Article  CAS  Google Scholar 

  173. Moss, B. et al. Unraveling charge transfer in CoFe Prussian blue modified BiVO4 photoanodes. ACS Energy Lett. 4, 337–342 (2019).

    Article  CAS  Google Scholar 

  174. Mills, T. J., Lin, F. & Boettcher, S. W. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. Phys. Rev. Lett. 112, 148304 (2014).

    Article  Google Scholar 

  175. Mi, Q., Zhanaidarova, A., Brunschwig, B. S., Gray, H. B. & Lewis, N. S. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ. Sci. 5, 5694–5700 (2012).

    Article  CAS  Google Scholar 

  176. Hill, J. C. & Choi, K.-S. Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J. Phys. Chem. C 116, 7612–7620 (2012).

    Article  CAS  Google Scholar 

  177. Santato, C., Ulmann, M. & Augustynski, J. Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001).

    Article  CAS  Google Scholar 

  178. Lhermitte, C. R., Garret Verwer, J. & Bartlett, B. M. Improving the stability and selectivity for the oxygen-evolution reaction on semiconducting WO3 photoelectrodes with a solid-state FeOOH catalyst. J. Mater. Chem. A 4, 2960–2968 (2016).

    Article  CAS  Google Scholar 

  179. Klepser, B. M. & Bartlett, B. M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. J. Am. Chem. Soc. 136, 1694–1697 (2014).

    Article  CAS  Google Scholar 

  180. Tang, J., Durrant, J. R. & Klug, D. R. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008).

    Article  CAS  Google Scholar 

  181. Cowan, A. J. et al. Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. J. Am. Chem. Soc. 133, 10134–10140 (2011).

    Article  CAS  Google Scholar 

  182. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    Article  CAS  Google Scholar 

  183. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  Google Scholar 

  184. Kuo, D.-Y. et al. Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139, 3473–3479 (2017).

    Article  CAS  Google Scholar 

  185. Kuo, D.-Y. et al. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): a discussion of the Sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 140, 17597–17605 (2018).

    Article  CAS  Google Scholar 

  186. Rao, R. R. et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 10, 2626–2637 (2017).

    Article  CAS  Google Scholar 

  187. Kuznetsov, D. A. et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2, 225–244 (2018).

    Article  CAS  Google Scholar 

  188. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  189. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  190. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  191. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  192. van Oversteeg, C. H. M., Doan, H. Q., de Groot, F. M. F. & Cuk, T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 46, 102–125 (2017).

    Article  Google Scholar 

  193. Kanan, M. W. et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  Google Scholar 

  194. Gorlin, Y. et al. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525–8534 (2013).

    Article  CAS  Google Scholar 

  195. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    Article  CAS  Google Scholar 

  196. Joya, K. S. & Sala, X. In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: spectroelectrochemical characterization of water oxidation electrocatalysts. Phys. Chem. Chem. Phys. 17, 21094–21103 (2015).

    Article  CAS  Google Scholar 

  197. Wang, D. et al. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation. J. Phys. Chem. C 119, 19573–19583 (2015).

    Article  CAS  Google Scholar 

  198. Lee, K. J., Elgrishi, N., Kandemir, B. & Dempsey, J. L. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 1, 0039 (2017).

    Article  CAS  Google Scholar 

  199. Vojvodic, A. et al. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. J. Chem. Phys. 134, 244509 (2011).

    Article  CAS  Google Scholar 

  200. Cheng, J. et al. Brønsted–Evans–Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112, 1308–1311 (2008).

    Article  CAS  Google Scholar 

  201. Li, Y., Tang, Z., Zhang, J. & Zhang, Z. Enhanced photocatalytic performance of tungsten oxide through tuning exposed facets and introducing oxygen vacancies. J. Alloy. Compd. 708, 358–366 (2017).

    Article  CAS  Google Scholar 

  202. Yuan, H., Han, K., Dubbink, D., Mul, G. & ten Elshof, J. E. Modulating the external facets of functional nanocrystals enabled by two-dimensional oxide crystal templates. ACS Catal. 7, 6858–6863 (2017).

    Article  CAS  Google Scholar 

  203. Bhatt, M. D. & Lee, J. S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J. Mater. Chem. A 3, 10632–10659 (2015).

    Article  CAS  Google Scholar 

  204. Wang, S. et al. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 24, 94–102 (2016).

    Article  CAS  Google Scholar 

  205. Wang, D. et al. Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem. Eur. J. 17, 1275–1282 (2011).

    Article  CAS  Google Scholar 

  206. Han, H. S. et al. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11, 1299–1306 (2018).

    Article  CAS  Google Scholar 

  207. Suntivich, J., Perry, E. E., Gasteiger, H. A. & Shao-Horn, Y. The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte. Electrocatalysis 4, 49–55 (2013).

    Article  CAS  Google Scholar 

  208. Garcia, A. C., Touzalin, T., Nieuwland, C., Perini, N. & Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem. Int. Ed. 58, 12999–13003 (2019).

    Article  CAS  Google Scholar 

  209. Stoerzinger, K. A. et al. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide. Surf. Chem. 2, 668–675 (2017).

    CAS  Google Scholar 

  210. Giordano, L. et al. pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016).

    Article  CAS  Google Scholar 

  211. Butler, M. A. Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977).

    Article  CAS  Google Scholar 

  212. Schulze, M., Kunz, V., Frischmann, P. D. & Würthner, F. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II. Nat. Chem. 8, 576–583 (2016).

    Article  CAS  Google Scholar 

  213. Vinyard, D. J., Ananyev, G. M. & Dismukes, G. C. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606 (2013).

    Article  CAS  Google Scholar 

  214. Allen, J. B. & Larry, R. F. Electrochemical Methods Fundamentals and Applications (Wiley, 2001).

  215. Bockris, J. O. M., Reddy, A. K. N. & Gamboa-Aldeco, M. in Modern Electrochemistry 2A: Fundamentals of Electrodics (eds Bockris, J. O’M., Reddy, A. K. N. & Gamboa-Aldeco, M.) 1035–1400 (Springer, 2000).

  216. Lewis, N. S. Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. J. Phys. Chem. B 102, 4843–4855 (1998).

    Article  CAS  Google Scholar 

  217. Rosenbluth, M. L. & Lewis, N. S. “Ideal” behavior of the open circuit voltage of semiconductor/liquid junctions. J. Phys. Chem. 93, 3735–3740 (1989).

    Article  CAS  Google Scholar 

  218. Lewis, N. S. An analysis of charge transfer rate constants for semiconductor/liquid interfaces. Annu. Rev. Phys. Chem. 42, 543–580 (1991).

    Article  CAS  Google Scholar 

  219. Gärtner, W. W. Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959).

    Article  Google Scholar 

  220. Kautek, W., Gerischer, H. & Tributsch, H. The role of carrier diffusion and indirect optical transitions in the photoelectrochemical behavior of layer type d-band semiconductors. J. Electrochem. Soc. 127, 2471 (1980).

    Article  CAS  Google Scholar 

  221. Beranek, R. Selectivity of chemical conversions: do light-driven photoelectrocatalytic processes hold special promise? Angew. Chem. Int. Ed. 58, 16724–16729 (2019).

    Article  CAS  Google Scholar 

  222. Wilson, R. H. A model for the current-voltage curve of photoexcited semiconductor electrodes. J. Appl. Phys. 48, 4292–4297 (1977).

    Article  CAS  Google Scholar 

  223. Albery, W. J., Bartlett, P. N., Hamnett, A. & Dare-Edwards, M. P. The transport and kinetics of minority carriers in illuminated semiconductor electrodes. J. Electrochem. Soc. 128, 1492 (1981).

    Article  CAS  Google Scholar 

  224. Reichman, J. The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells. Appl. Phys. Lett. 36, 574–577 (1980).

    Article  CAS  Google Scholar 

  225. Reiss, H. Photocharacteristics for electrolyte-semiconductor junctions. J. Electrochem. Soc. 125, 937 (1978).

    Article  CAS  Google Scholar 

  226. Pastor, E. et al. Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nat. Commun. 8, 14280 (2017).

    Article  CAS  Google Scholar 

  227. Le Formal, F. et al. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015).

    Article  Google Scholar 

  228. Lewis, N. S. Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg. Chem. 44, 6900–6911 (2005).

    Article  CAS  Google Scholar 

  229. Lewis, N. S. Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces. Acc. Chem. Res. 23, 176–183 (1990).

    Article  CAS  Google Scholar 

  230. Cummings, C. Y., Marken, F., Peter, L. M., Upul Wijayantha, K. G. & Tahir, A. A. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134, 1228–1234 (2012).

    Article  CAS  Google Scholar 

  231. Ding, Q. et al. Unravelling the water oxidation mechanism on NaTaO3-based photocatalysts. J. Mater. Chem. A 8, 6812–6821 (2020).

    Article  CAS  Google Scholar 

  232. Pham, H. H., Cheng, M.-J., Frei, H. & Wang, L.-W. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface. ACS Catal. 6, 5610–5617 (2016).

    Article  CAS  Google Scholar 

  233. Mesa, C. A., Rao, R. R., Francàs, L., Corby, S. & Durrant, J. R. Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat. Chem. 12, 1099–1101 (2020).

    Article  CAS  Google Scholar 

  234. Mesa, C. A. et al. Impact of the synthesis route on the water oxidation kinetics of hematite photoanodes. J. Phys. Chem. Lett. 11, 7285–7290 (2020).

    Article  CAS  Google Scholar 

  235. Zhang, Y. et al. Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 140, 3264–3269 (2018).

    Article  CAS  Google Scholar 

  236. Vinyard, D. J. & Brudvig, G. W. Progress toward a molecular mechanism of water oxidation in photosystem II. Annu. Rev. Phys. Chem. 68, 101–116 (2017).

    Article  CAS  Google Scholar 

  237. Siegbahn, P. E. M. O–O bond formation in the S4 state of the oxygen-evolving complex in photosystem II. Chem. Eur. J. 12, 9217–9227 (2006).

    Article  CAS  Google Scholar 

  238. Siegbahn, P. E. M. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O–O bond formation and O2 release. Biochim. Biophys. Acta Bioenerg. 1827, 1003–1019 (2013).

    Article  CAS  Google Scholar 

  239. Pecoraro, V. L., Baldwin, M. J., Caudle, M. T., Hsieh, W. Y. & Law, N. A. A proposal for water oxidation in photosystem II. Pure Appl. Chem. 70, 925–929 (1998).

    Article  CAS  Google Scholar 

  240. Vrettos, J. S., Limburg, J. & Brudvig, G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta Bioenerg. 1503, 229–245 (2001).

    Article  CAS  Google Scholar 

  241. Sproviero, E. M., Gascón, J. A., McEvoy, J. P., Brudvig, G. W. & Batista, V. S. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J. Am. Chem. Soc. 130, 3428–3442 (2008).

    Article  CAS  Google Scholar 

  242. Barber, J. A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 3, 17041 (2017).

    Article  CAS  Google Scholar 

  243. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  Google Scholar 

  244. Brodsky, C. N. et al. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: modeling the high-valent active site in oxygen-evolving catalysts. Proc. Natl Acad. Sci. USA 114, 3855–3860 (2017).

    Article  CAS  Google Scholar 

  245. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    Article  CAS  Google Scholar 

  246. Bediako, D. K., Surendranath, Y. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel–borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    Article  CAS  Google Scholar 

  247. Corby, S. et al. Separating bulk and surface processes in NiOx electrocatalysts for water oxidation. Sustain. Energy Fuels 4, 5024–5030 (2020).

    Article  CAS  Google Scholar 

  248. Huynh, M., Bediako, D. K. & Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    Article  CAS  Google Scholar 

  249. Pavlovic, Z., Ranjan, C., van Gastel, M. & Schlögl, R. The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy. Chem. Commun. 53, 12414–12417 (2017).

    Article  CAS  Google Scholar 

  250. Massué, C. et al. Reactive electrophilic OI− species evidenced in high-performance iridium oxohydroxide water oxidation electrocatalysts. ChemSusChem 10, 4786–4798 (2017).

    Article  Google Scholar 

  251. Zhao, Y. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl Acad. Sci. USA 115, 2902–2907 (2018).

    Article  CAS  Google Scholar 

  252. Li, W. et al. Hematite-based solar water splitting in acidic solutions: functionalization by mono- and multilayers of iridium oxygen-evolution catalysts. Angew. Chem. Int. Ed. 54, 11428–11432 (2015).

    Article  CAS  Google Scholar 

  253. Diaz-Morales, O., Hersbach, T. J. P., Hetterscheid, D. G. H., Reek, J. N. H. & Koper, M. T. M. Electrochemical and spectroelectrochemical characterization of an iridium-based molecular catalyst for water splitting: turnover frequencies, stability, and electrolyte effects. J. Am. Chem. Soc. 136, 10432–10439 (2014).

    Article  CAS  Google Scholar 

  254. Francàs, L. et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 10, 5208 (2019).

    Article  Google Scholar 

  255. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Article  Google Scholar 

  256. Takashima, T., Hashimoto, K. & Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 134, 1519–1527 (2012).

    Article  CAS  Google Scholar 

  257. Ooka, H., Takashima, T., Yamaguchi, A., Hayashi, T. & Nakamura, R. Element strategy of oxygen evolution electrocatalysis based on in situ spectroelectrochemistry. Chem. Commun. 53, 7149–7161 (2017).

    Article  CAS  Google Scholar 

  258. Ooka, H., Yamaguchi, A., Takashima, T., Hashimoto, K. & Nakamura, R. Efficiency of oxygen evolution on iridium oxide determined from the pH dependence of charge accumulation. J. Phys. Chem. C 121, 17873–17881 (2017).

    Article  CAS  Google Scholar 

  259. Ooka, H. et al. Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy. Phys. Chem. Chem. Phys. 18, 15199–15204 (2016).

    Article  CAS  Google Scholar 

  260. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  Google Scholar 

  261. Rao, R. R., Stephens, I. E. L. & Durrant, J. R. Understanding what controls the rate of electrochemical oxygen evolution. Joule 5, 16–18 (2020).

    Article  Google Scholar 

  262. Mesa, C. A. et al. Kinetics of photoelectrochemical oxidation of methanol on hematite photoanodes. J. Am. Chem. Soc. 139, 11537–11543 (2017).

    Article  CAS  Google Scholar 

  263. Natarajan, A., Oskam, G. & Searson, P. C. The potential distribution at the semiconductor/solution interface. J. Phys. Chem. B 102, 7793–7799 (1998).

    Article  CAS  Google Scholar 

  264. Uosaki, K. Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott-Schottky plot. J. Electrochem. Soc. 130, 895–897 (1983).

    Article  CAS  Google Scholar 

  265. Zandi, O. & Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016).

    Article  CAS  Google Scholar 

  266. Boettcher, S. W. & Surendranath, Y. Heterogeneous electrocatalysis goes chemical. Nat. Catal. 4, 4–5 (2021).

    Article  CAS  Google Scholar 

  267. Kern, J. et al. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat. Commun. 5, 4371 (2014).

    Article  CAS  Google Scholar 

  268. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

    Article  CAS  Google Scholar 

  269. Sivasankar, N., Weare, W. W. & Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133, 12976–12979 (2011).

    Article  CAS  Google Scholar 

  270. Frei, H. Water oxidation investigated by rapid-scan FT-IR spectroscopy. Curr. Opin. Chem. Eng. 12, 91–97 (2016).

    Article  Google Scholar 

  271. Dickens, C. F., Kirk, C. & Nørskov, J. K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960–18977 (2019).

    Article  CAS  Google Scholar 

  272. Plaisance, C. P., Beinlich, S. D. & Reuter, K. Kinetics-based computational catalyst design strategy for the oxygen evolution reaction on transition-metal oxide surfaces. J. Phys. Chem. C 123, 8287–8303 (2019).

    Article  CAS  Google Scholar 

  273. Mefford, J. T., Zhao, Z., Bajdich, M. & Chueh, W. C. Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches. Energy Environ. Sci. 13, 622–634 (2020).

    Article  CAS  Google Scholar 

  274. Klahr, B., Gimenez, S., Zandi, O., Fabregat-Santiago, F. & Hamann, T. Competitive photoelectrochemical methanol and water oxidation with hematite electrodes. ACS Appl. Mater. Interfaces 7, 7653–7660 (2015).

    Article  CAS  Google Scholar 

  275. Wahl, A. et al. Photoelectrochemical studies pertaining to the activity of TiO2 towards photodegradation of organic compounds. J. Electroanal. Chem. 396, 41–51 (1995).

    Article  Google Scholar 

  276. Pendlebury, S. R. et al. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 47, 716–718 (2011).

    Article  CAS  Google Scholar 

  277. Ahmed, A. Y., Kandiel, T. A., Ivanova, I. & Bahnemann, D. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Appl. Surf. Sci. 319, 44–49 (2014).

    Article  CAS  Google Scholar 

  278. Shi, X. et al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 8, 701 (2017).

    Article  Google Scholar 

  279. Siahrostami, S., Li, G.-L., Viswanathan, V. & Nørskov, J. K. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017).

    Article  CAS  Google Scholar 

  280. Cha, H. G. & Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    Article  CAS  Google Scholar 

  281. Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).

    Article  Google Scholar 

  282. You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  Google Scholar 

  283. Uekert, T., Kuehnel, M. F., Wakerley, D. W. & Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 11, 2853–2857 (2018).

    Article  CAS  Google Scholar 

  284. Wakerley, D. W. et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy 2, 17021 (2017).

    Article  CAS  Google Scholar 

  285. Du, J., Chen, Z., Chen, C. & Meyer, T. J. A half-reaction alternative to water oxidation: chloride oxidation to chlorine catalyzed by silver ion. J. Am. Chem. Soc. 137, 3193–3196 (2015).

    Article  CAS  Google Scholar 

  286. Zhang, L. et al. Photoelectrocatalytic arene C–H amination. Nat. Catal. 2, 366–373 (2019).

    Article  CAS  Google Scholar 

  287. Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    Article  CAS  Google Scholar 

  288. Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    Article  CAS  Google Scholar 

  289. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).

    Article  CAS  Google Scholar 

  290. Katayama, K. Photo-excited charge carrier imaging by time-resolved pattern illumination phase microscopy. J. Chem. Phys. 153, 054201 (2020).

    Article  CAS  Google Scholar 

  291. Grigioni, I. et al. Wavelength-dependent ultrafast charge carrier separation in the WO3/BiVO4 coupled system. ACS Energy Lett. 2, 1362–1367 (2017).

    Article  CAS  Google Scholar 

  292. Kim, W. et al. Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy Environ. Sci. 6, 3732–3739 (2013).

    Article  CAS  Google Scholar 

  293. Li, W. et al. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ. Sci. 9, 1794–1802 (2016).

    Article  CAS  Google Scholar 

  294. Liardet, L., Katz, J. E., Luo, J., Grätzel, M. & Hu, X. An ultrathin cobalt–iron oxide catalyst for water oxidation on nanostructured hematite photoanodes. J. Mater. Chem. A 7, 6012–6020 (2019).

    Article  CAS  Google Scholar 

  295. Soedergren, S., Hagfeldt, A., Olsson, J. & Lindquist, S.-E. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 98, 5552–5556 (1994).

    Article  CAS  Google Scholar 

  296. Gerischer, H. The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35, 1677–1699 (1990).

    Article  CAS  Google Scholar 

  297. Ahlgren, W. L. Analysis of the current-voltage characteristics of photoelectrolysis cells. J. Electrochem. Soc. 128, 2123 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Research Council (project Intersolar 291482) and the European Union’s Horizon 2020 research and innovation programme under grant agreement 732840-A-LEAF. L.S. acknowledges her Marie Skłodowska-Curie fellowship funding (H2020-MSCA-IF-2016, grant no. 749231). The authors further acknowledge the UKRI Strategic Priorities Fund for funding, thank C. A. Mesa, M. Sachs, B. Moss and S. Selim for their thoughts and suggestions, and thank M. Sachs for compiling, and providing some of, the data in Fig. 2b.

Author information

Authors and Affiliations

Authors

Contributions

S.C. led the drafting of the manuscript, with R.R.R. leading the sections on water oxidation catalysis. All authors contributed to editing the manuscript prior to submission.

Corresponding author

Correspondence to James R. Durrant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks T. Hamann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corby, S., Rao, R.R., Steier, L. et al. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater 6, 1136–1155 (2021). https://doi.org/10.1038/s41578-021-00343-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00343-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing