Skip to main content
Log in

Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the physical and chemical degradation of monoclonal antibodies in the presence of Zn2+.

Methods

A full length IgG1 monoclonal antibody (mAb1) was formulated with various amounts of Zn2+. The resulting mixture was incubated for several weeks at room temperature and analyzed using a variety of biochemical techniques to look for various physical (e.g. aggregation) and chemical (e.g. fragmentation) degradation pathways.

Results

mAb1 of the IgG1 subclass undergoes aggregation in the presence of Zn2+ in a concentration dependent manner. Up to hexamers were characterized using SEC-MALS. No fragmentation was noticed in the presence of Zn2+ as opposed to that found in our previous report when IgG1 mAbs were incubated in the presence of Cu2+ ions. Site directed mutagenesis indicated the involvement of Fc histidine (His 310) in Zn2+ mediated aggregation.

Conclusions

A novel metal ion mediated isodesmic aggregation mechanism was found in IgG1 class of monoclonal antibodies. Histidine residues in the Fc region were determined to be the binding site and implicated in Zn2+ mediated aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10:345–52.

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, Singh S, Zeng DL, King K, Nema S. J Pharm Sci. 2007;96:1–26.

    Article  CAS  PubMed  Google Scholar 

  3. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB. J Chromatogr B Biomed Sci Appl. 2001;752:233–45.

    Article  CAS  PubMed  Google Scholar 

  4. Cacia J, Keck R, Presta LG, Frenz J. Isomerization of an Aspartic Acid Residue in the Complementarity-Determining Regions of a Recombinant Antibody to Human IgE: Identification and Effect on Binding Affinity. Biochemistry. 1996;35:1897–903.

    Article  CAS  PubMed  Google Scholar 

  5. Martin-Moe S, Lim FJ, Wong RL, Sreedhara A, Sundaram J, Sane SU. A new roadmap for biopharmaceutical drug product development: Integrating development, validation, and quality by design. J Pharm Sci. 2011;100:3031–43.

    Article  CAS  PubMed  Google Scholar 

  6. Sreedhara A, Cordoba A, Zhu Q, Kwong J, Liu J. Pharm Res. 2012;29:187–97.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, Zhou JZ, Dill KA, Swartz TE. In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability. Proc Natl Acad Sci U S A. 2014;111:18601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaderjian WB, Chin ET, Harris RJ, Etcheverry TM. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol Prog. 2005;21:550–3.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou S, Evans B, Schoneich C, Singh SK. Biotherapeutic Formulation Factors Affecting Metal Leachables from Stainless Steel Studied by Design of Experiments. AAPS PharmSciTech. 2012;13:284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim BG, Park HW. High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture. Appl Microbiol Biotechnol. 2016;100:2163–70.

    Article  CAS  PubMed  Google Scholar 

  11. Seidl A, Hainzl O, Richter M, Fischer R, Bohm S, Deutel B, Hartinger M, Windisch J, Casadevall N, London GM, Macdougall I. Tungsten-Induced Denaturation and Aggregation of Epoetin Alfa During Primary Packaging as a Cause of Immunogenicity. Pharm Res. 2012;29:1454–67.

    Article  CAS  PubMed  Google Scholar 

  12. Bee JS, Nelson SA, Freund E, Carpenter JF, Randolph TW. Precipitation of a Monoclonal Antibody by Soluble Tungsten. J Pharm Sci. 2009;98:3290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Glover ZK, Basa L, Moore B, Laurence JS, Sreedhara A. Metal ion interactions with mAbs: Part 1. MAbs. 2015;7:901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sankararamakrishnan R, Verma S, Kumar S. ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis. Proteins. 2005;58:211–21.

    Article  CAS  PubMed  Google Scholar 

  15. Ouellette D, Alessandri L, Piparia R, Aikhoje A, Chin A, Radziejewski C, Correia I. Elevated cleavage of human immunoglobulin gamma molecules containing a lambda light chain mediated by iron and histidine. Anal Biochem. 2009;389:107–17.

    Article  CAS  PubMed  Google Scholar 

  16. Barber-Zucker S, Shaanan B, Zarivach R. Transition metal binding selectivity in proteins and its correlation with the phylogenomic classification of the cation diffusion facilitator protein family. Sci Rep. 2017;7:16381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci. 2013;1277:91–104.

    Article  CAS  PubMed  Google Scholar 

  18. Schacherl M, Pichlo C, Neundorf I, Baumann U. Structure (London, England: 1993). 2015;23:1632–42.

    Article  CAS  Google Scholar 

  19. Saito R, Sato T, Ikai A, Tanaka N. Acta Crystallogr D Biol Crystallogr. 2004;60:792–5.

    Article  PubMed  CAS  Google Scholar 

  20. Bounaga S, Laws AP, Galleni M, Page MI. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase. Biochem J. 1998;331(Pt 3):703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith GD, Swenson DC, Dodson EJ, Dodson GG, Reynolds CD. Structural stability in the 4-zinc human insulin hexamer. Proc Natl Acad Sci U S A. 1984;81:7093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Istrate AN, Kozin SA, Zhokhov SS, Mantsyzov AB, Kechko OI, Pastore A, Makarov AA, Polshakov VI. Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization. Sci Rep. 2016;6:21734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macaraeg NF, Reilly DE, Wong AW. Use of an anti-apoptotic CHO cell line for transient gene expression. Biotechnol Prog. 2013;29:1050–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wurth C, Demeule B, Mahler HC, Adler M. Quality by Design Approaches to Formulation Robustness—An Antibody Case Study. J Pharm Sci. 2016;105:1667–75.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao D, Moore JS. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org Biomol Chem. 2003;1:3471–91.

    Article  CAS  PubMed  Google Scholar 

  26. Markvoort AJ, ten Eikelder HMM, Hilbers PAJ, de Greef TFA. Fragmentation and Coagulation in Supramolecular (Co)polymerization Kinetics. ACS Cent Sci. 2016;2:232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Greef TF, Smulders MM, Wolffs M, Schenning AP, Sijbesma RP, Meijer EW. Supramolecular Polymerization. Chem Rev. 2009;109:5687–754.

    Article  PubMed  CAS  Google Scholar 

  28. Zastrow ML, Pecoraro VL. Designing Hydrolytic Zinc Metalloenzymes. Biochemistry. 2014;53:957–78.

    Article  CAS  PubMed  Google Scholar 

  29. Oganesyan V, Damschroder MM, Leach W, Wu H, Dall'Acqua WF. Structural characterization of a mutated, ADCC-enhanced human Fc fragment. Mol Immunol. 2008;45:1872–82.

    Article  CAS  PubMed  Google Scholar 

  30. Sibéril S, Ménez R, Jorieux S, de Romeuf C, Bourel D, Fridman W-H, Ducancel F, Stura EA, Teillaud J-L. Effect of zinc on human IgG1 and its FcγR interactions. Immunol Lett. 2012;143:60–9.

    Article  PubMed  CAS  Google Scholar 

  31. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible Self-Association Increases the Viscosity of a Concentrated Monoclonal Antibody in Aqueous Solution. J Pharm Sci. 2005;94:1928–40.

    Article  CAS  PubMed  Google Scholar 

  32. Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible Self-Association of a Concentrated Monoclonal Antibody Solution Mediated by Fab–Fab Interaction That Impacts Solution Viscosity. J Pharm Sci. 2008;97:4219–27.

    Article  CAS  PubMed  Google Scholar 

  33. Yadav S, Sreedhara A, Kanai S, Liu J, Lien S, Lowman H, Kalonia DS, Shire SJ. Establishing a Link Between Amino Acid Sequences and Self-Associating and Viscoelastic Behavior of Two Closely Related Monoclonal Antibodies. Pharm Res. 2011;28:1750–64.

    Article  CAS  PubMed  Google Scholar 

  34. Rathnayaka H, Mozziconacci O, Sreedhara A, Schöneich C. Fragmentation of a Monoclonal Antibody by Peroxotungstate. Pharm Res. 2018;35:219.

    Article  PubMed  CAS  Google Scholar 

  35. Ellin RI, Kaminskis A, Zvirblis P, Sultan WE, Shutz MB, Matthews R. Leaching of Zinc Compound from Rubber Stoppers Into the Contents of Automatic Atropine Injectors. J Pharm Sci. 1985;74:788–90.

    Article  CAS  PubMed  Google Scholar 

  36. Chang JY, Xiao NJ, Zhu M, Zhang J, Hoff E, Russell SJ, Katta V, Shire SJ. Leachables from Saline-Containing IV Bags Can Alter Therapeutic Protein Properties. Pharm Res. 2010;27:2402–13.

    Article  CAS  PubMed  Google Scholar 

  37. Pham NB, Meng WS. Protein aggregation and immunogenicity of biotherapeutics. Int J Pharm. 2020;585:119523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, Topp EM. Immunogenicity of Therapeutic Protein Aggregates. J Pharm Sci. 2016;105:417–30.

    Article  CAS  PubMed  Google Scholar 

  39. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and Characterization of Therapeutic Antibody Aggregates. J Biol Chem. 2011;286:25118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32:372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm. 2018;550:251–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alavattam Sreedhara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 7748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S., Flores, H., Walters, B. et al. Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies. Pharm Res 38, 1387–1395 (2021). https://doi.org/10.1007/s11095-021-03089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03089-7

KEY WORDS

Navigation