Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum

Abstract

Modifying Pt surfaces by foreign metals with a higher oxophilicity is a promising approach to improve the kinetics of hydrogen evolution and oxidation reactions. The role of foreign metals, however, is not fully understood. Here we study Ru-modified Pt as a model system to understand the underlying mechanisms in activity improvement through combining in situ infrared spectroscopy and theoretical calculations. In an alkaline solution, the hydrogen evolution and oxidation reaction activity of Ru-modified Pt is proportional to the Ru coverage due to the strain and electronic effects of the Pt substrate, which lower the energy barrier of the rate-determining Volmer step; these are the governing reasons for the improved catalytic activities. This work not only deepens our understanding of hydrogen electrocatalysis mechanisms, but also provides guidelines for the rational design of advanced electrocatalysts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical responses of Pt and Ru-modified Pt electrodes.
Fig. 2: In situ ATR-SEIRAS spectra.
Fig. 3: Ru coverage and activity relationship.
Fig. 4: DFT calculations of the HER on Pt(111) and Ru/Pt(111).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request. The atomic coordinates of the optimized models are provided in Supplementary Data 1. Source data are provided with this paper.

References

  1. Bockris, J. O. M. The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrog. Energy 27, 731–740 (2002).

    Article  CAS  Google Scholar 

  2. Shao, M., Chang, Q., Dodelet, J.-P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T. & Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 5, 5380–5387 (2015).

    Article  CAS  Google Scholar 

  4. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, G. & Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  7. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, W., Lyu, K., Xiao, L., Lu, J. & Zhuang, L. Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media. Electrochim. Acta 327, 135016 (2019).

    Article  CAS  Google Scholar 

  12. Intikhab, S., Snyder, J. D. & Tang, M. H. Adsorbed hydroxide does not participate in the Volmer step of alkaline hydrogen electrocatalysis. ACS Catal. 7, 8314–8319 (2017).

    Article  CAS  Google Scholar 

  13. Liu, E. et al. Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl–water–cation adducts. J. Am. Chem. Soc. 141, 3232–3239 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  15. Nash, J., Zheng, J., Wang, Y., Xu, B. & Yan, Y. Mechanistic study of the hydrogen oxidation/evolution reaction over bimetallic PtRu catalysts. J. Electrochem. Soc. 165, J3378–J3383 (2018).

    Article  CAS  Google Scholar 

  16. Elbert, K. et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 5, 6764–6772 (2015).

    Article  CAS  Google Scholar 

  17. Wang, X. et al. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 3, 1198–1204 (2018).

    Article  CAS  Google Scholar 

  18. Schwämmlein, J. N. et al. Origin of superior HOR/HER activity of bimetallic Pt–Ru catalysts in alkaline media identified via Ru@Pt core–shell nanoparticles. J. Electrochem. Soc. 165, H229–H239 (2018).

    Article  CAS  Google Scholar 

  19. Li, J. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

    Article  CAS  Google Scholar 

  20. Liu, E. et al. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 13, 3064–3074 (2020).

    Article  CAS  Google Scholar 

  21. McCrum, I. T. & Koper, M. T. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  22. Giles, S. A. et al. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 367, 328–331 (2018).

    Article  CAS  Google Scholar 

  23. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  24. Chrzanowski, W. & Wieckowski, A. Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 13, 5974–5978 (1997).

    Article  CAS  Google Scholar 

  25. Ohyama, J., Sato, T., Yamamoto, Y., Arai, S. & Satsuma, A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 135, 8016–8021 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Green, C. L. & Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum–ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 106, 1036–1047 (2002).

    Article  CAS  Google Scholar 

  27. Sheng, W., Myint, M., Chen, J. G. & Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013).

    Article  CAS  Google Scholar 

  28. Alia, S. M. & Pivovar, B. S. Evaluating hydrogen evolution and oxidation in alkaline media to establish baselines. J. Electrochem. Soc. 165, F441 (2018).

    Article  CAS  Google Scholar 

  29. Zhu, S., Qin, X., Yao, Y. & Shao, M. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).

    Article  PubMed  CAS  Google Scholar 

  30. Kubota, J. & Aika, K.-i. FTIR spectra of terminal and bridged hydrogen atoms adsorbed on ruthenium metal particles dispersed on magnesium oxide. J. Chem. Soc. Chem. Commun. 1992, 661–662 (1992).

    Article  Google Scholar 

  31. Adzic, R. R. et al. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).

    Article  CAS  Google Scholar 

  32. ter Veen, H. R. J., Kim, T., Wachs, I. E. & Brongersma, H. H. Applications of high sensitivity–low energy ion scattering (HS-LEIS) in heterogeneous catalysis. Catal. Today 140, 197–201 (2009).

    Article  CAS  Google Scholar 

  33. Osawa, M., Tsushima, M., Mogami, H., Samjeske, G. & Yamakata, A. Structure of water at the electrified platinum–water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).

    Article  CAS  Google Scholar 

  34. Danilovic, N. et al. The effect of noncovalent interactions on the HOR, ORR, and HER on Ru, Ir, and Ru0.50Ir0.50 metal surfaces in alkaline environments. Electrocatalysis 3, 221–229 (2012).

    Article  CAS  Google Scholar 

  35. Marković, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  Google Scholar 

  36. Maier, S., Lechner, B. A., Somorjai, G. A. & Salmeron, M. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J. Am. Chem. Soc. 138, 3145–3151 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Ogasawara, H. et al. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Lindgren, P., Kastlunger, G. & Peterson, A. A. A challenge to the G ≈ 0 interpretation of hydrogen evolution. ACS Catal. 10, 121–128 (2020).

    Article  CAS  Google Scholar 

  39. Skúlason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Article  CAS  Google Scholar 

  40. Brankovic, S. R. et al. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces. J. Electroanal. Chem. 524–525, 231–241 (2002).

    Article  Google Scholar 

  41. Herrero, E., Feliu, J. & Wieckowski, A. Scanning tunneling microscopy images of ruthenium submonolayers spontaneously deposited on a Pt(111) electrode. Langmuir 15, 4944–4948 (1999).

    Article  CAS  Google Scholar 

  42. Jung, C., Kim, J. & Rhee, C. K. CO preoxidation on Ru-modified Pt(111). Electrochem. Commun. 12, 1363–1366 (2010).

    Article  CAS  Google Scholar 

  43. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010).

    Article  CAS  Google Scholar 

  44. Yan, Y.-G. et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal–electrolyte interfaces. J. Phys. Chem. B 109, 7900–7906 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, S., Jiang, B., Cai, W.-B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  49. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  50. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  51. Methfessel, M. & Paxton, A. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  52. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  PubMed  CAS  Google Scholar 

  53. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  CAS  Google Scholar 

  54. Sakong, S., Forster-Tonigold, K. & Groß, A. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J. Chem. Phys. 144, 194701 (2016).

    Article  PubMed  CAS  Google Scholar 

  55. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  56. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  57. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grant Council (16308420, 16310419 and C6011-20G, received by M.S.) of the Hong Kong Special Administrative Region, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20SC01, received by M.S.), Hong Kong Innovation and Technology Commission (ITC-CNERC14EG03, received by M.S.), Opening Project of the State Key Laboratory of Physical Chemistry of Solid Surfaces at Xiamen University (201903, received by M.S.) collaborated with B. Ren, the Tianhe-2 National Supercomputer Center in Guangzhou and the Research Grants Council Postdoctoral Fellowship Scheme (PDFS2021-6S08, received by S.Z.). The authors thank L. Weng from HKUST for fruitful discussions, and N. Ho from MCPF of HKUST for XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.S. supervised the project. S.Z. and M.S. conceived the idea and designed the experiments. S.Z. performed the electrochemical and spectroscopic measurements. X.Q. carried out the simulations. S.Z., F.X., Z.T., J.L. and J.Y. performed the material preparation and general characterizations. Y.X. and Q.C. conducted the atomic force microscopy characterizations. S.Y. and M.C. performed the high-sensitivity low-energy ion scattering measurements. S.Z., X.Q. and M.S. analysed the data and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Minhua Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Eduardo Gracia-Espino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Discussion and Tables 1–4.

Supplementary Data 1

Atomic coordinates of the optimized models.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Qin, X., Xiao, F. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat Catal 4, 711–718 (2021). https://doi.org/10.1038/s41929-021-00663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00663-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing