Skip to main content
Log in

Inactivation of Native K Channels

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

…the fact that the potassium ion decreases rectification in the tissue may be of assistance in determining where in the cell rectification occurs… (Guttman 1944)

Abstract

We have experimented with isolated cardiomyocytes of mollusks Helix. During the whole-cell patch-clamp recordings of K+ currents a considerable decrease in amplitude was observed upon repeated voltage steps at 0.96 Hz. For these experiments, ventricular cells were depolarized to identical + 20 mV from a holding potential of − 50 mV. The observed spontaneous inhibition of outward currents persisted in the presence of 4-aminopyridine, tetraethylammonium chloride or E-4031, the selective class III antiarrhythmic agent that blocks HERG channels. Similar tendency was retained when components of currents sensitive to either 4-AP or TEA were mathematically subtracted. Waveforms of currents sensitive to 1 and 10 micromolar concentration of E-4031 were distinct comprising prevailingly those activated during up to 200 ms pulses. The outward current activated by a voltage ramp at 60 mV x s−1 rate revealed an inward rectification around + 20 mV. This feature closely resembles those of the mammalian cardiac delayed rectifier IKr.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

4-AP:

4-Aminopyridine

HP:

Holding potential

I K :

Delayed rectifier K current and channel

Kv:

Voltage-dependent potassium channels

MP:

Membrane potential

TEA:

Tetraethylammonium chloride

TP:

Test pulse

References

  • Adams DJ, Oxford GS (1983) Interaction of internal anions with potassium channels of the squid giant axon. J Gen Physiol 82:429–448

    Article  CAS  PubMed  Google Scholar 

  • Alving BO (1969) Differences between pacemaker and nonpacemaker neurons of Aplysia on voltage clamping. J Gen Physiol 54:512–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aréchiga-Figueroa I, Rodríguez-Martínez M, Albarado A, Torres-Jácome J, Sánchez-Chapula J (2010) Multiple effects of 4-aminopyridine on feline and rabbit sinoatrial node myocytes and multicellular preparations. Pflugers Archiv 459:345–355

    Article  PubMed  Google Scholar 

  • Berillis P, Hatziioannou M, Karapanagiotidis IT, Neofitou C (2013) Morphological study of muscular tissue collagen of wild and reared Cornu aspersum (Müller, 1774). Moll Res 33:6–13

    Article  Google Scholar 

  • Bett GCL, Lis A, Guo H, Liu M, Zhou Q, Rasmusson RL (2012) Interaction of the S6 proline hinge with N-type and C-type inactivation in Kv1.4 channels. Biophys J 103:1440–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çelik MY, Duman MB, Sariipek M, Gören GU, Öztürk DK, Kocatepe D et al (2019) Comparison of fatty acids and some mineral matter profiles of wild and farmed snails, Cornu aspersum Müller, 1774. Moll Res 39:234–240

    Article  Google Scholar 

  • Clark RB, Tse A, Giles WR (1990) Electrophysiology of parasympathetic neurones isolated from the interatrial septum of bull-frog heart. J Physiology 427:89–125

    Article  CAS  Google Scholar 

  • Colding-Jorgensen M (1977) Impulse dependent adaptation in Helix pomatia neurones: demonstration of the adaptation conductance. Acta Physiol Scand 101:382–393

    Article  CAS  PubMed  Google Scholar 

  • Curtis TM, Depledge MH, Williamson R (1999) Voltage-activated currents in cardiac myocytes of the blue mussel, Mytilus edulis. Comp Biochem Physiol Part A 124:231–241

    Article  Google Scholar 

  • David J-P, Lisewski U, Crump SM, Jepps TA, Bocksteins E, Wilck N et al (2019) Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia. FASEB J 33:2537–2552

    Article  CAS  PubMed  Google Scholar 

  • Denyer JC, Brown HF (1990) Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol 428:405–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Follmer CH, Colatsky TJ (1990) Block of delayed rectifier potassium current, IK, by flecainide and E-4031 in cat ventricular myocytes. Circulation 82:289–293

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Stary-Weinzinger A, Sanguinetti MC (2013) ICA-105574 interacts with a common binding site to elicit opposite effects on inactivation gating of EAG and ERG potassium channels. Mol Pharmacol 83:805–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebauer M, Isbrandt D, Sauter K, Callsen B, Nolting A, Pongs O et al (2004) N-type inactivation features of Kv4.2 channel gating. Biophys J 86:210–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelband CH, Warth JD, Mason HS, Zhu M, Moore JM, Kenyon JL et al (1999) Angiotensin II type 1 receptor-mediated inhibition of K+ channel subunit Kv2.2 in brain stem and hypothalamic neurons. Circ Res 84:352–359

    Article  CAS  PubMed  Google Scholar 

  • Guttman R (1944) Action of potassium and narcotics on rectification in nerve and muscle. J Gen Physiol 28:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honjo H, Boyett MR, Coppen SR, Takagishi Y, Opthof T, Severs NJ et al (2002) Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isotype and cell size. Cardiovasc Res 53:89–96

    Article  CAS  PubMed  Google Scholar 

  • Hugnot JP, Salinas M, Lesage F, Guillemare E, de Weille J, Heurteaux C et al (1996) Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J 15:3322–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islas LD, Sigworth FJ (1999) Voltage sensitivity and gating charge in Shaker and Shab family potassium channels. J Gen Physiol 114:723–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson Q, Jones S (2014) Shaker IR T449 mutants separate C- from U-type inactivation. J Memb Biol 247:319–330

    Article  CAS  Google Scholar 

  • Kanemaru K, Morishita F, Matsushima O, Furukawa Y (2002) Aplysia cardioactive peptide (NdWFamide) enhances the L-type Ca2+ current of Aplysia ventricular myocytes. Peptides 23:1991–1998

    Article  CAS  PubMed  Google Scholar 

  • Kerschensteiner D, Stocker M (1999) Heteromeric assembly of Kv2.1 with Kv9.3: effect on the state dependence of inactivation. Biophys J 77:248–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemic KG, Shieh CC, Kirsch GE, Jones SW (1998) Inactivation of Kv2.1 potassium channels. Biophys J 74:1779–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemic KG, Kirsch GE, Jones SW (2001) U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys J 81:814–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodirov SA, Brunner M, Busconi L, Koren G (2003) Long-term restitution of 4-aminopyridine-sensitive currents in Kv1DN ventricular myocytes using adeno-associated virus-mediated delivery of Kv1.5. FEBS Lett 550:74–78

    Article  CAS  PubMed  Google Scholar 

  • Kodirov SA (2004) Comparative study of potassium channels in cardiomyocytes of mammals and molluscs [Ph. D.]. Saint Petersburg: Saint Petersburg University. p. 144 p

  • Kodirov SA, Zhuravlev VL, Pavlenko VK, Safonova TA, Brachmann J (2004) K+ channels in cardiomyocytes of the pulmonate snail Helix. J Membr Biol 197:145–154

    Article  CAS  PubMed  Google Scholar 

  • Kodirov SA (2011) The neuronal control of cardiac functions in Molluscs. Comp Biochem Physiol A Mol Integr Physiol 160:102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodirov SA (2016) Defensive K channel. Acta Physiol 216:10–12

    Article  CAS  Google Scholar 

  • Kodirov SA, Psyrakis D, Brachmann J, Zhuravlev VL (2019a) Limulus and heart rhythm. J Exp Zool A Ecol Genet Physiol 331:61–79

    Google Scholar 

  • Kodirov SA, Zhuravlev VL, Brachmann J (2019b) Prevailing effects of ibutilide on fast delayed rectifier K+ channel. J Memb Biol 252:609–616

    Article  CAS  Google Scholar 

  • Kodirov SA (2020) Tale of tail current. Prog Biophys Mol Biol 150:78–97

    Article  CAS  PubMed  Google Scholar 

  • Kodirov SA (2021) HCN and nicotine. In Press, Acta Physiol

    Book  Google Scholar 

  • Kodirov SA, Bonni K, Wehrmeister M, Lutz B (2021) Depolarization-initiated endogenous cannabinoids release and underlying retrograde neurotransmission in interneurons of amygdala. Learn Mem 28:44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyuk PG, Krishtal OA, Pidoplichko VI (1981a) Calcium inward current and related charge movements in the membrane of snail neurones. J Physiol 310:403–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyuk PG, Veselovsky NS, Tsyndrenko AY (1981b) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons – I. Sodium currents. Neuroscience 6:2423–2430

    Article  CAS  PubMed  Google Scholar 

  • Krishtal O (2015) Receptor for protons: first observations on acid sensing ion channels. Neuropharmacology 94:4–8

    Article  CAS  PubMed  Google Scholar 

  • Kukita F (2011) K+ channels of squid giant axons open by an osmotic stress in hypertonic solutions containing nonelectrolytes. J Memb Biol 242:119–135

    Article  CAS  Google Scholar 

  • Kurata HT, Wang Z, Fedida D (2004) NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. J Gen Physiol 123:505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmenkov AI, Nekrasova OV, Peigneur S, Tabakmakher VM, Gigolaev AM, Fradkov AF et al (2018) Kv1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: structural basis of selectivity. Neuropharmacology 143:228–238

    Article  CAS  PubMed  Google Scholar 

  • Lewis A, McCrossan ZA, Abbott GW (2004) MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating. J Biol Chem 279:7884–7892

    Article  CAS  PubMed  Google Scholar 

  • Magura IS, Valeyev AE, Zamekhovsky IZ (1975) The effect of temperature on the outward currents in the soma of molluscan neurones in voltage-clamp conditions. J Exp Biol 62:265–275

    Article  Google Scholar 

  • Muller TH, Swandulla D, Lux HD (1989) Activation of three types of membrane currents by various divalent cations in identified molluscan pacemaker neurons. J Gen Physiol 94:997–1014

    Article  CAS  PubMed  Google Scholar 

  • Noble D, Tsien RW (1968) The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol 195:185–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osadchii OE (2014) Impaired epicardial activation-repolarization coupling contributes to the proarrhythmic effects of hypokalaemia and dofetilide in guinea pig ventricles. Acta Physiol (oxf) 211:48–60

    Article  CAS  Google Scholar 

  • Oyama Y, Harata N, Akaike N (1991) Rapid interaction of tetraethylammonium with delayed K+ channel in mammalian brain neuron. Neurosci Lett 131:153–155

    Article  CAS  PubMed  Google Scholar 

  • Rozsa KS, Zhuravlev VL (1981) Central regulation and coordination of activity of cardio-renal system and pneumostoma in the suboesophageal ganglia of Helix pomatia. Comp Biochem Physiol 69A:85–98

    Article  Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  • Uese K, Hagiwara N, Miyawaki T, Kasanuki H (1999) Properties of the transient outward current in rabbit sino-atrial node cells. J Mol Cell Cardiol 31:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Yeoman MS, Benjamin PR (1999) Two types of voltage-gated K+ currents in dissociated heart ventricular muscle cells of the snail Lymnaea stagnalis. J Neurophysiol 82:2415–2427

    Article  CAS  PubMed  Google Scholar 

  • Yeoman MS, Brezden BL, Benjamin PR (1999) LVA and HVA Ca2+ currents in ventricular muscle cells of the Lymnaea heart. J Neurophysiol 82:2428–2440

    Article  CAS  PubMed  Google Scholar 

  • Zhuravlev V, Bugaj V, Kodirov SA, Safonova T, Staruschenko A (2001) Giant multimodal heart motoneurons of Achatina fulica: a new cardioregulatory input in pulmonates. Comp Biochem Physiol Part A 130:183–196

    Article  CAS  Google Scholar 

  • Zhuravlev VL, Piatsy DD, Titarenko EE, Safonova TA, Shabelnikov SV, Kodirov SA (2017) Comparison of heart rate in embryonic, young and adult Achatina fulica. Moll Res 37:133–139

    Article  Google Scholar 

Download references

Acknowledgements

The support of Deutsche Forschungsgemeinschaft within SFB320 "Herzfunktion und ihre Regulation" is gratefully acknowledged. The authors greatly appreciate the excellent technical support of Isolde Villhauer and Klara Güth.

Funding

The funder was funded by Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sodikdjon A. Kodirov.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodirov, S.A., Brachmann, J., Safonova, T.A. et al. Inactivation of Native K Channels. J Membrane Biol 255, 13–31 (2022). https://doi.org/10.1007/s00232-021-00195-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00195-w

Keywords

Navigation