Skip to main content
Log in

Study on the Cavity Forming Induced by a Gas Jet Impinging on a Liquid Surface Based on a Deformed Mesh Method

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current study focuses on the cavity formation induced by jet impingement with the help of numerical simulations based on a deformed mesh method. The interface between the liquid phase and gas phase separates the calculation domain into two single-phase domains, which exchange momentum data except for mass transfer. For the subsonic jet flow, the results show that the cavity depth is a decreasing function when the blowing height is increased, while the cavity diameter increases when increasing the blowing height. In addition, larger diameter of the nozzle will result in a deeper cavity because the jet flow attenuation becomes weaker. The simulation result shows good agreement with that of the theoretical equation on the cavity depth and diameter for the subsonic jet flow. In addition, the cavity formation created by the supersonic flow, which is treated as a compressible flow, can also be described by the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.B. Banks and D.V. Chandrasekhara, J. Fluid Mech. 11, 13. (1962).

    Google Scholar 

  2. E.T. Turkdogan, Chem. Eng. Sci. 21, 1133. (1966).

    Article  Google Scholar 

  3. R.S. Rosler and G.H. Stewart, J. Fluid Mech. 31, 163. (1968).

    Article  Google Scholar 

  4. F.R. Cheslak, J.A. Nicholls, and M. Sichel, J. Fluid Mech. 36, 55. (1969).

    Article  Google Scholar 

  5. S.S. Park, N. Dyussekenov, and H.Y. Sohn, Metall. Mater. Trans. B 41, 51. (2009).

    Article  Google Scholar 

  6. A. Meidani, M. Isac, A. Richardson, A. Cameron, and R. Guthrie, Trans. Iron Steel Inst. Jpn. 44, 1639. (2004).

    Article  Google Scholar 

  7. H.-J. Odenthal, U. Falkenreck, and J. Schlüter, CFD simulation of multiphase melt flows in steelmaking converters, in European Conference on Computational Fluid Dynamics ECCOMAS CFD (2006).

  8. M. Ersson, A. Tilliander, M. Iguchi, L. Jonsson, and P. Jönssonn, ISIJ Int. 46, 1137. (2006).

    Article  Google Scholar 

  9. M. Li, L. Li, Q. Li, and Z. Zou, JOM 70, 2051. (2018).

    Article  Google Scholar 

  10. X.B. Zhou, M. Ersson, L. Zhong, and P.G. Jönsson, Steel Res. Int. 86, 1328. (2015).

    Article  Google Scholar 

  11. H.Y. Hwang and G.A. Irons, Metall. Mater. Trans. B 42, 575. (2011).

    Article  Google Scholar 

  12. M. Asai, H. Nijo, and K. Ito, ISIJ Int. 49, 178. (2008).

    Article  Google Scholar 

  13. M. Lv, H. Li, T. Lin, K. Xie, and K. Xue, Steel Res. Int. (2021).

  14. H. Wang, R. Zhu, Y.L. Gu, and C.J. Wang, Can. Metall. Q. 53, 367. (2014).

    Article  Google Scholar 

  15. A. He and A. Belmonte, Phys. Fluids 22, 958. (2010).

    Article  Google Scholar 

  16. M.M. Mordasov, A.P. Savenkov, and K.E. Chechetov, Tech. Phys. 61, 659. (2016).

    Article  Google Scholar 

  17. D. Nakazono, K.-I. Abe, M. Nishida, and K. Kurita, ISIJ 44, 91. (2004).

    Article  Google Scholar 

  18. W.K. Soh, B.C. Khoo, and W.Y.D. Yuen, Exp. Fluids 39, 498. (2005).

    Article  Google Scholar 

  19. T. Shimada, T. Akiyama, E. Kasai, and J.-I. Yagi, ISIJ Int. 40, 958. (2000).

    Article  Google Scholar 

  20. J. Maruyama, K. Ito, M. Ando, J. Okada, and K. Ito, ISIJ Int. 60, 1375. (2020).

    Article  Google Scholar 

  21. M. Ersson, A. Tilliander, L. Jonsson, and P. Jönssonn, ISIJ Int. 48, 377. (2008).

    Article  Google Scholar 

  22. H.Y. Hwang and G.A. Irons, Metall. Mater. Trans. B 43, 302. (2011).

    Article  Google Scholar 

  23. J. Solórzano-López, R. Zenit, and M.A. Ramírez-Argáez, Appl. Math. Model. 35, 4991. (2011).

    Article  Google Scholar 

  24. M. Lv, R. Zhu, Y.G. Guo, and Y.W. Wang, Metall. Mater. Trans. B 44, 1560. (2013).

    Article  Google Scholar 

  25. A.V. Nguyen and G.M. Evans, Appl. Math. Model. 30, 1472. (2006).

    Article  Google Scholar 

  26. X.B. Zhou, M. Ersson, L. Zhong, J. Yu, and P.G. Jönsson, Steel Res. Int. 85, 273. (2014).

    Article  Google Scholar 

  27. M. Alam, J. Naser, G. Brooks, and A. Fontana, ISIJ Int. 52, 1026. (2012).

    Article  Google Scholar 

  28. G. Wei, R. Zhu, T. Cheng, K. Dong, L. Yang, and X. Wu, Metall. Mater. Trans. B 49, 361. (2017).

    Article  Google Scholar 

  29. M. Li, Q. Li, S. Kuang, and Z. Zou, Steel Res. Int. 87, 288. (2015).

    Article  Google Scholar 

  30. D.C. Wilcox, Turbulence Modeling for CFD, 2nd edn. (DCW Industries, La Canada, 1998).

    Google Scholar 

  31. W. Wang, Z. Yuan, H. Matsuura, H. Zhao, C. Dai, and F. Tsukihashi, ISIJ 50, 491. (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The research work is supported by the National Natural Science Foundation of China (Nos. 51704006 and 51774004) and Natural Science Research Project for Anhui Universities (No. KJ2018A0045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yue.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yue, Q., Di, Z. et al. Study on the Cavity Forming Induced by a Gas Jet Impinging on a Liquid Surface Based on a Deformed Mesh Method. JOM 73, 2953–2962 (2021). https://doi.org/10.1007/s11837-021-04810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04810-y

Navigation