Skip to main content

Advertisement

Log in

Groundwater quality evaluation and human health risks assessment using the WQI, NPI and HQnitrate models: case of the Sfax intermediate aquifer, Sahel Tunisia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater is a vital natural resource required to satisfy the domestic and agricultural needs. In general, human health is linked to the quality of the consumed water. For instance, long-term exposure to high nitrate levels in groundwater may cause problems. Hence, the present study was conducted to assess the nitrate contamination of groundwater as well as its related health risks for the inhabitants of the Sfax region, Sahel Tunisia. Irrigation groundwater suitability has been evaluated with sodium content (%Na), electrical conductivity (EC), magnesium hazard (MH), sodium adsorption ratio (SAR), permeability index (PI), Kelly’s ratio (KR) and soluble sodium percent (SSP). The results indicate that the selected groundwater is characterized by low to moderate quality for irrigation. Furthermore, the drinking water quality index (DWQI) was assessed using potential of hydrogen (pH), total dissolved solids (TDS), magnesium (Mg2+), calcium (Ca2+), sodium (Na+), chloride (Cl), sulfate (SO42−), potassium (K+), bicarbonate (HCO3) and nitrate (NO3). The results indicate that 3.63% of samples have good quality of water, while 41.82% have poor to very poor water quality and the rest (54.55%) are unfit for drinking. The nitrate pollution index (NPI) model revealed that about 42% of the samples present significant to very significant type of pollution. Based on human health risk assessment, the children are at higher risks compared to the other affected groups. The obtained results could be used as a basic document for realistic management of groundwater quality and to provide an overview for decision-making authorities to take necessary actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data mentioned in the paper and that support the findings of this study are available from the corresponding author upon request.

Code availability

Not applicable.

Abbreviations

ABW:

Average body weight

AET:

Average exposure time

CBE:

Charge balance error

CDI:

Chronic daily intake

CRDA:

Regional commissariat of agricultural development

DWQI:

Drinking water quality index

ED:

Exposure duration

EF:

Exposure frequency

HQ:

Hazard quotient

IARC:

International agency for research on cancer

INS:

National institute of statistics

IR:

Ingestion rate

IRIS:

Integrated risk information system

IWQI:

Irrigation water quality index

NPI:

Nitrate pollution index

RfD:

Reference dose of the contaminant

USEPA:

United States environmental protection agency

WHO:

World health organization

WQI:

Water quality index

References

  • Adimalla, N. (2019). Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1508329.

    Article  Google Scholar 

  • Adimalla, N., Li, P., & Qian, H. (2018). Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment (HHRA). Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1460579.

    Article  Google Scholar 

  • Adimalla, N., & Qian, H. (2019). Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and Environmental Safety, 176, 153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066.

    Article  CAS  Google Scholar 

  • Adimalla, N., Qian, H., & Li, P. (2019). Entropy water quality index and probabilistic health risk assessment from geochemistry of groundwaters in hard rock terrain of Nanganur County, South India. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125544.

    Article  Google Scholar 

  • Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Applied Water Science. https://doi.org/10.1007/s13201-018-0682-1.

    Article  Google Scholar 

  • Adimalla, N., & Wu, J. (2019). Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.154655.

    Article  Google Scholar 

  • Agoubi, B., Kharroubi, A., Bouri, S., & Abida, H. (2010). Contribution of geostatistical modelling to mapping groundwater level and aquifer geometry: Case study of Sfax’s deep aquifer, Tunisia. Middle East Journal of Scientific Research, 6(3), 305–316.

    Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2018). Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-2581-2.

    Article  Google Scholar 

  • Akber, M. A., Islam, M. A., Dutta, M., Billah, S. M., & Islam, M. A. (2020). Nitrate contamination of water in dug wells and associated health risks of rural communities in southwest Bangladesh. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-8128-2.

    Article  Google Scholar 

  • Allouche, N., Ben Brahim, F., Gontara, M., Khanfir, H., & Bouri, S. (2015). Validation of two applied methods of groundwater vulnerability mapping: Application to the coastal aquifer system of Southern Sfax (Tunisia). Journal of Water Supply: Research and Technology-Aqua, 64(6), 719–737. https://doi.org/10.2166/aqua.2015.105.

    Article  Google Scholar 

  • Amouri, M. (1998). Etude hydrogéologique de la nappe profonde de Sfax. Rapport DGRE, CRDA de Sfax, 19.

  • Asadi, S., Vuppala, P., & Reddy, M. (2007). Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India. International Journal of Environmental Research and Public Health, 4(1), 45–52. https://doi.org/10.3390/ijerph2007010008.

    Article  CAS  Google Scholar 

  • Atlas Sfax. (2013). Rapport interne de la direction générale de l‘aménagement du territoire.

  • Ayadi, R., Trabelsi, R., Zouari, K., Saibi, H., Itoi, R., & Khanfir, H. (2017). Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: A case study of the intermediate aquifer, Sfax, southeastern Tunisia. Hydrogeology Journal, 26(4), 983–1007. https://doi.org/10.1007/s10040-017-1702-1.

    Article  CAS  Google Scholar 

  • Ayed, B., Jmal, I., Sahal, S., Mokadem, N., Saidi, S., Boughariou, E., & Bouri, S. (2017). Hydrochemical characterization of groundwater using multivariate statistical analysis: the Maritime Djeffara shallow aquifer (Southeastern Tunisia). Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-7168-6.

    Article  Google Scholar 

  • Ayers, R. S. (1977). Quality of water for irrigation. Journal of Irrigation and Drainage Div. ASCE, 103(IR2), 135–154.

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/T0234E/T0234E00.htm#TOC.

  • Bawoke, G. T., & Anteneh, Z. L. (2020). Spatial assessment and appraisal of groundwater suitability for drinking consumption in Andasa watershed using water quality index (WQI) and GIS techniques: Blue Nile Basin, Northwestern Ethiopia. Cogent Engineering. https://doi.org/10.1080/23311916.2020.1748950.

    Article  Google Scholar 

  • Belhouchette, H. (2018). Le système aquifère semi-profond de Sfax: Caractérisation hydrodynamique et gestion intégrée de la ressource hydrique. Mastère de recherche en Sciences de la Terre. Faculté des Sciences de Sfax, Tunisie, 35.

  • Ben Ali, R. (2011). Contribution des approches hydrogéologique et hydrochimique à l‘étude de la nappe semi profonde de Sfax Master de recherche, Faculté des Sciences de Sfax, Tunisie, 73.

  • Ben Boubaker, H. (2016). L’eau en Tunisie : faut-il s’attendre au pire ? Policy paper. Bull. Cemi-eau-december 2016. Ceter of Mediterranean and International Studies. Konrad Adenauer Stiftung. 12p.

  • Bouaziz, S. (2003). Cartographie géologique de la région de Sfax. Rapport INC 2003.

  • Boughariou, E., Bahloul, M., Jmal, I., Allouche, N., Makni, J., Khanfir, H., & Bouri, S. (2018). Hydrochemical and statistical studies of the groundwater salinization combined with MODPATH numerical model: Case of the Sfax coastal aquifer, Southeast Tunisia. Arabian Journal of Geosciences, 11, 69. https://doi.org/10.1007/s12517-018-3408-7.

    Article  CAS  Google Scholar 

  • Burollet, P. E. (1956). Contribution à l’etude Stratigraphique de la Tunisie Centrale [Contribution to the stratigraphic study of central Tunisia]. Annale Des Mines Et De La Géologie, 18, 345.

    Google Scholar 

  • Castany, G. (1953). Les plissements quaternaires en Tunisie [The Quaternary folds in Tunisia]. Comptes Rendus Sommaires Société Géologique de France, SGF, Paris, 155–157.

  • Chen, J., Wu, H., & Qian, H. (2016). Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, northwest China. Expo Health, 8, 349–359. https://doi.org/10.1007/s12403-016-0208-8.

    Article  Google Scholar 

  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China. Expo Health, 9, 183–195. https://doi.org/10.1007/s12403-016-0231-9.

    Article  CAS  Google Scholar 

  • Chen, S., Wu, W., Hu, K., & Li, W. (2010). The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale. Ecological Complexity, 7(2), 131–138. https://doi.org/10.1016/j.ecocom.2010.03.003.

    Article  Google Scholar 

  • Chica-Olmo, M., Peluso, F., Luque-Espinar, J. A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E., & Chica-Rivas, L. (2017). A methodology for assessing public health risk associated with groundwater nitrate contamination: A case study in an agricultural setting (southern Spain). Environmental Geochemistry and Health, 39(5), 1117–1132. https://doi.org/10.1007/s10653-016-9880-7.

    Article  CAS  Google Scholar 

  • CRDA-Sfax. (2019). Regional Commissariat of Agricultural Development Sfax. The annual report for the year 2018. By Larayedh Olfa. C.R.D.A of Sfax.

  • Doneen, L. D. (1964). Notes on water quality in agriculture (p. 48). University of California, Davis.

    Google Scholar 

  • Egbueri, J. C. (2020). Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha, Nigeria. Analytical Letters, 1–19. https://doi.org/10.1080/00032719.2020.1712606.

  • Egbueri, J. C., Ezugwu, C. K., Ameh, P. D., Unigwe, C. O., & Ayejoto, D. A. (2020). Appraising drinking water quality in Ikem rural area (Nigeria) based on chemometrics and multiple indexical methods. Environmental Monitoring and Assessment, 192, 308. https://doi.org/10.1007/s10661-020-08277-3.

    Article  CAS  Google Scholar 

  • Egbueri, J. C., Mgbenu, C. N., & Chukwu, C. N. (2019). Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-019-00613-y.

    Article  Google Scholar 

  • Fallahati, A., Soleimani, H., Alimohammadi, M., Dehghanifard, E., Askari, M., Eslami, F., & Karami, L. (2020). Impacts of drought phenomenon on the chemical quality of groundwater resources in the central part of Iran—application of GIS technique. Environmental Monitoring and Assessment, 192(1), 64. https://doi.org/10.1007/s10661-019-8037-4.

    Article  CAS  Google Scholar 

  • Gangolli, S. D., Van den Brandt, P. A., Feron, V. J., Janzowsky, C., Koeman, J. H., Speijers, G. J., Spiegelhalder, B., Walker, R., & Wishnok, J. S. (1994). Nitrate, nitrite and N-nitroso compounds. European Journal of Pharmacology: Environmental Toxicology and Pharmacology, 292(1), 1–38. https://doi.org/10.1016/0926-6917(94)90022-1.

  • Ghribi, R. (2010). Etude morpho-structurale et évolution des paléochamps de contraintes du Sahel Tunisien : Implications géodynamiques. Thèse de doctorat. Université de Sfax, Tunisie, 256.

  • Gupta, S. K., Gupta, R. C., Gupta, A. B., Seth, A. K., Bassin, J. K., & Gupta, A. (2000). Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. Environmental Health Perspectives, 108(4), 363–366. https://doi.org/10.1289/ehp.00108363.

    Article  CAS  Google Scholar 

  • Hamzaoui-Azaza, F., Ketata, M., Bouhlila, R., Gueddari, M., & Riberio, L. (2011). Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss-Koutine aquifer, southeastern Tunisia. Environmental Monitoring and Assessment, 174, 283–298. https://doi.org/10.1007/s10661-010-1457-9.

    Article  CAS  Google Scholar 

  • Hchaichi, Z. (2008). Etude Hydrogéologique et Géochimique de la nappe intermédiaire de Sfax et sa relation avec le système phréatique du bassin Nord de Sfax. Mémoire de Mastère, Ecole Nationale d`Ingénieurs de Sfax (ENIS), Tunisie, 111.

  • ICMR (Indian Council of Medical Research) Expert Group. (1990). Nutrient Requirements and Recommended Dietary Allowances for Indians: A Report of the Expert Group of the Indian Council of Medical Research.

  • INS. (2020). Institut Nationale de la Statistique. Données démographiques et sociales de la Tunisie. Disponible sur http://www.ins.tn/.

  • IRIS (Integrated Risk Information System, US EPA). (2012). Nitrate (CASRN 14797–55–8). http://www.epa.gov/iris/subst/0076.htm.

  • Jeribi, L. (1995). Contribution à l’étude hydrogéologique, hydrochimique et isotopique de la nappe profonde de Sfax. Projet fin d’études, ENIS, Univ. de Sfax, Tunisie.

  • Karakuş, C. B., & Yıldız, S. (2019). Evaluation for irrigation water purposes of groundwater quality in the vicinity of Sivas City centre (Turkey) by using Gis and an irrigation water quality index. Irrigation and Drainage. https://doi.org/10.1002/ird.2386.

    Article  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., & Muthusankar, G. (2020). Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00613-3.

    Article  Google Scholar 

  • Kelly, W. P. (1951). Alkali Soils: Their Formation, Properties and Reclamation. New York, Reinhold, 176. Science, 114(2969), 558. https://doi.org/10.1126/science.114.2969.558.

  • Ketata, M., Gueddari, M., & Bouhlila, R. (2011). Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). Arabian Journal of Geosciences, 5(6), 1379–1390. https://doi.org/10.1007/s12517-011-0292-9.

    Article  Google Scholar 

  • Kim, H., Yu, S., Oh, J., Kim, K., Lee, J., Moniruzzaman, M., Kim, H. K., & Yun, S. (2019). Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea. Agriculture, Ecosystems & Environment, 273, 50–61. https://doi.org/10.1016/j.agee.2018.12.010.

    Article  CAS  Google Scholar 

  • Kshetrimayum, K. S., & Bajpai, V. N. (2012). Assessment of groundwater quality for irrigation use and evolution of hydrochemical facies in the markanda river basin, Northwestern India. Journal Geological Society of India, 79(2), 189–198.

    Article  CAS  Google Scholar 

  • Kumar, D., Singh, A., Jha, R. K., Sahoo, B. B., Sahoo, S. K., & Jha, V. (2019). Source characterization and human health risk assessment of nitrate in groundwater of middle Gangetic Plain India. Arabian Journal of Geosciences, 12(11), 339. https://doi.org/10.1007/s12517-019-4519-5.

    Article  CAS  Google Scholar 

  • Kumar, P. S., & Balamurugan, P. (2019). Suitability of ground water for irrigation purpose in Omalur Taluk, Salem, Tamil Nadu India. Indian Journal of Ecology., 46(1), 1–6.

    Google Scholar 

  • Li, P., He, X., & Guo, W. (2019). Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an City on the Loess Plateau of northwest China. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1553612.

    Article  Google Scholar 

  • Li, P., Li, X., Meng, X., Li, M., & Zhang, Y. (2016). Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Exposure and Health, 8(3), 361–379. https://doi.org/10.1007/s12403-016-0205-y.

    Article  CAS  Google Scholar 

  • Maliki, A. (2000). Etude hydrogéologique, hydrochimique et isotopique de la nappe profonde de Sfax (Tunisie) [Hydrogeological, hydrochemical and isotopic study of the deep aquifer of Sfax (Tunisia)]. PhD Thesis, ENIS, Tunisia, 301.

  • Meireles, A. C. M., Andrade, E. M., Chaves, L. C. G., Frischkorn, H., & Crisostomo, L. A. (2010). A new proposal of the classification of irrigation water. Revista Ciencia Agronomica, 41(3), 349–357. https://doi.org/10.1590/S180666902010000300005.

    Article  Google Scholar 

  • Mohsin, M., Safdar, S., Asghar, F., & Jamal, F. (2013). Assessment of drinking water quality and its impact on residents health in Bahawalpur City. International Journal of Humanities and Social Science., 3(15), 114–128.

    Google Scholar 

  • Nakagawa, K., Amano, H., Takao, Y., Hosono, T., & Berndtsson, R. (2017). On the use of coprostanol to identify source of nitrate pollution in groundwater. Journal of Hydrology, 550, 663–668. https://doi.org/10.1016/j.jhydrol.2017.05.038.

    Article  CAS  Google Scholar 

  • Narsimha, A., & Sudarshan, V. (2016). Contamination of fluoride in groundwater and its effect on human health: A case study in hard rock aquifers of Siddipet, Telangana State India. Applied Water Science, 7(5), 2501–2512. https://doi.org/10.1007/s13201-016-0441-0.

    Article  CAS  Google Scholar 

  • NT: Norme tunisienne NT 09–14, relative à la qualite des eaux de boisson (2013).

  • Panneerselvam, B., Karuppannan, S., & Muniraj, K. (2020). Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2020.1833300.

    Article  Google Scholar 

  • Ravikumar, P., Somashekar, R. K., & Angami, M. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State India. Environmental Monitoring and Assessment, 173(1–4), 459–487.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). (US Salinity Laboratory) Diagnosis and improvement of saline and alkaline soils, US Department of Agriculture hand book.

  • Rizeei, H. M., Azeez, O. S., Pradhan, B., & Khamees, H. H. (2018). Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-018-7013-8.

    Article  Google Scholar 

  • Sadler, R., Maetam, B., Edokpolo, B., Connell, D., Yu, J., Stewart, D., Park, M. J., Gray, D., & Laksono, B. (2016). Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang Indonesia. Environmental Pollution, 216(738), 745. https://doi.org/10.1016/j.envpol.2016.06.041.

    Article  CAS  Google Scholar 

  • Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring and Assessment, 163(1–4), 327–335. https://doi.org/10.1007/s10661-009-0837-5.

    Article  CAS  Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2007). Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal India. Environmental Geology, 55(4), 823–835. https://doi.org/10.1007/s00254-007-1034-x.

    Article  CAS  Google Scholar 

  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M., & Dehghani, M. (2019). Health risk assessment of nitrate in groundwater resources of iranshahr using monte carlo simulation and geographic information system (GIS). MethodsX, 6, 1812–1821. https://doi.org/10.1016/j.mex.2019.07.024.

    Article  Google Scholar 

  • Simsek, C., & Gunduz, O. (2007). IWQ index: A GIS-integrated technique to assess irrigation water quality. Environmental Monitoring and Assessment, 128(1–3), 277–300. https://doi.org/10.1007/s10661-006-9312-8.

    Article  CAS  Google Scholar 

  • Soleimani, H., Nasri, O., Ghoochani, M., Azhdarpoor, A., Dehghani, M., Radfard, M., et al. (2020). Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivety analysis in rural areas of Divandarreh County, Kurdistan province, Iran. International Journal of Environmental Analytical Chemistryhttps://doi.org/10.1080/03067319.2020.1751147.

  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater. Environment Quality., 22(3), 392. https://doi.org/10.2134/jeq1993.00472425002200030002x.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain - A case study from Mettur taluk, Salem district, Tamil Nadu India. Journal of Earth System Science, 117(1), 49–58. https://doi.org/10.1007/s12040-008-0012-3.

    Article  CAS  Google Scholar 

  • Szabolcs, I., Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, 803–812.

  • Tian, H., Liang, X., Gong, Y., Kang, Z., & Jin, H. (2019). Health risk assessment of nitrate pollution in shallow groundwater: A case study in Changchun New District China. La Houille Blanche, 5–6, 45–58. https://doi.org/10.1051/lhb/2019055.

    Article  Google Scholar 

  • Tlili-Zrelli, B., Gueddari, M., & Bouhlila, R. (2018). Spatial and temporal variations of water quality of mateur aquifer (Northeastern Tunisia): Suitability for irrigation and drinking purposes. Hindawi, Journal of Chemistry, 2408632, 15. https://doi.org/10.1155/2018/2408632.

    Article  CAS  Google Scholar 

  • Troudi, N., Hamzaoui-Azaza, F., Tzoraki, O., Melki, F., & Zammouri, M. (2020). Assessment of groundwater quality for drinking purpose with special emphasis on salinity and nitrate contamination in the shallow aquifer of Guenniche (Northern Tunisia). Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-08584-9.

    Article  Google Scholar 

  • US Environmental Protection Agency (USEPA). (2001). Baseline Human Health Risk Assessment Vasquez Boulevard and I-70 Superfund Site. Denver CO.

  • USEPA (United States Environmental Protection Agency). (1989). Superfund Public Health Evaluation Manual. Washington, DC.

  • USEPA (US Environmental Protection Agency). (1991). Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). http://epa-prgs.ornl.gov/radionuclides/HHEMB.

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu India. Environmental Monitoring and Assessment, 171, 595–609. https://doi.org/10.1007/s10661-009-1302-1.

    Article  CAS  Google Scholar 

  • Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2017). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7(6), 3267–3280.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Aamalawar, M. L., & Laxman Sahu, U. (2019). Nitrate associated health risks from groundwater of Kadava River Basin Nashik, Maharashtra, India. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1528861.

    Article  Google Scholar 

  • Wang, H., Gu, H., Lan, S., Wang, M., & Chi, B. (2018). Human health risk assessment and sources analysis of nitrate in shallow groundwater of the Liujiang basin, China. Human and Ecological Risk Assessment: An International Journal, 24(6), 1515–1531. https://doi.org/10.1080/10807039.2017.1416455.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality. In Incorporating the first addendum (4th., pp. 38). WHO chronicle.

  • Wilcox, L. V. (1948). The quality of water for irrigation use technical bulletins, 170282. United States, Department of Agriculture, Economic Research Service.

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. USDA Circular No. 969. Washington, DC, 19.

  • Wu, J., & Sun, Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health, 8(3), 311–329. https://doi.org/10.1007/s12403-015-0170-x.

    Article  CAS  Google Scholar 

  • Wu, J., Zhang, Y., & Zhou, H. (2020). Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125607.

    Article  Google Scholar 

  • Yang, Q., Li, Z., Xie, C., Liang, J., & Ma, H. (2020). Risk assessment of groundwater hydrochemistry for irrigation suitability in Ordos Basin, China. Natural Hazards, 101, 309–325. https://doi.org/10.1007/s11069-018-3451-4.

    Article  Google Scholar 

  • Yidana, S. M., & Yidana, A. (2010). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Science, 59, 1461–1473.

    Article  CAS  Google Scholar 

  • Yu, G., Wang, J., Liu, L., Li, Y., Zhang, Y., & Wang, S. (2020). The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai China. BMC Public Health, 20, 437. https://doi.org/10.1186/s12889-020-08583-y.

    Article  CAS  Google Scholar 

  • Zébidi, H. (1989). Hydrogéologie de la nappe profonde de Sfax [Hydrogeology of the deep aquifer of Sfax]. Report, DGRE, Tunis, 27.

  • Zhai, Y., Lei, Y., Wu, J., Teng, Y., Wang, J., Zhao, X., & Pan, X. (2017). Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environmental Science and Pollution Research, 24(4), 3640–3653. https://doi.org/10.1007/s11356-016-8088-9.

    Article  Google Scholar 

  • Zhang, H. (2008). Nitrate Contamination of Groundwater in Southern Hebei Plain and its Health Risk Assessment. Institute of Geographical Sciences and Natural Resources Research, Hebei.

  • Zhang, Q., Xu, P., & Qian, H. (2020). Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of Northwest China. Exposure and Health. https://doi.org/10.1007/s12403-020-00345-w.

    Article  Google Scholar 

  • Zhang, Y., Wu, J., & Xu, B. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environment and Earth Science, 77, 273. https://doi.org/10.1007/s12665-018-7456-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge anonym’s reviewers for their useful and constructive comments and their meaningful suggestions which are helpful for us to improve the quality of the paper. In addition, authors are grateful to Prof. Elhoucine Essefi for reviewing the language of the paper.

Funding

No funding was received by the authors.

Author information

Authors and Affiliations

Authors

Contributions

SB supervised the work; HB performed the analysis and calculations in consultation with EB and OL, HB wrote the manuscript in consultation with SB

Corresponding author

Correspondence to Salem Bouri.

Ethics declarations

Conflict of interest

We declare that they have no potential conflict of interests associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhouchette, H., Boughariou, E., Larayedh, O. et al. Groundwater quality evaluation and human health risks assessment using the WQI, NPI and HQnitrate models: case of the Sfax intermediate aquifer, Sahel Tunisia. Environ Geochem Health 44, 2629–2647 (2022). https://doi.org/10.1007/s10653-021-01053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01053-3

Keyword

Navigation