Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism

Abstract

Non-invasive, high-throughput spectroscopic techniques can identify chiral indices (n,m) of carbon nanotubes down to the single-tube level1,2,3,4,5,6. Yet, for complete characterization and to unlock full functionality, the handedness, the structural property associated with mirror symmetry breaking, also needs to be identified accurately and efficiently7,8,9,10,11,12,13,14. So far, optical methods fail in the handedness characterization of single nanotubes because of the extremely weak chiroptical signals (roughly 10−7) compared with the excitation light15,16. Here we demonstrate the complete structure identification of single nanotubes in terms of both chiral indices and handedness by Rayleigh scattering circular dichroism. Our method is based on the background-free feature of Rayleigh scattering collected at an oblique angle, which enhances the nanotube’s chiroptical signal by three to four orders of magnitude compared with conventional absorption circular dichroism. We measured a total of 30 single-walled carbon nanotubes including both semiconducting and metallic nanotubes and found that their absolute chiroptical signals show a distinct structure dependence, which can be qualitatively understood through tight-binding calculations. Our strategy enables the exploration of handedness-related functionality of single nanotubes and provides a facile platform for chiral discrimination and chiral device exploration at the level of individual nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiroptical signal measurement for single nanotubes.
Fig. 2: Rayleigh circular dichroism measurement for a suspended nanotube.
Fig. 3: Typical Ray-CD results for three representative nanotubes and the summary of handedness results for 30 nanotubes.
Fig. 4: Structure-dependent Ray-CD peak intensity.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper, Extended Data Figs. 1 and 2 and the Supplementary Information. Extra data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  2. Sfeir, M. Y. et al. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306, 1540–1543 (2004).

    Article  CAS  Google Scholar 

  3. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  4. Liu, K. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotechnol. 7, 325–329 (2012).

    Article  CAS  Google Scholar 

  5. Liu, K. et al. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat. Nanotechnol. 8, 917–922 (2013).

    Article  CAS  Google Scholar 

  6. Liu, K. H. et al. Systematic determination of absolute absorption cross-section of individual carbon nanotubes. Proc. Natl Acad. Sci. USA 111, 7564–7569 (2014).

    Article  CAS  Google Scholar 

  7. Samsonidze, G. G. et al. Interband optical transitions in left- and right-handed single-wall carbon nanotubes. Phys. Rev. B 69, 205402 (2004).

    Article  Google Scholar 

  8. Peng, X. et al. Optically active single-walled carbon nanotubes. Nat. Nanotechnol. 2, 361–365 (2007).

    Article  CAS  Google Scholar 

  9. Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 5, 443–450 (2010).

    Article  CAS  Google Scholar 

  10. Wei, X. et al. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun. 7, 12899 (2016).

    Article  CAS  Google Scholar 

  11. Ao, G., Streit, J. K., Fagan, J. A. & Zheng, M. Differentiating left- and right-handed carbon nanotubes by DNA. J. Am. Chem. Soc. 138, 16677–16685 (2016).

    Article  CAS  Google Scholar 

  12. Magg, M. et al. Resonance raman optical activity spectra of single-walled carbon nanotube enantiomers. J. Phys. Chem. Lett. 7, 221–225 (2016).

    Article  CAS  Google Scholar 

  13. Sato, N., Tatsumi, Y. & Saito, R. Circular dichroism of single-wall carbon nanotubes. Phys. Rev. B 95, 155436 (2017).

    Article  Google Scholar 

  14. Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

    Article  CAS  Google Scholar 

  15. Sanchez-Castillo, A., Roman-Velazquez, C. E. & Noguez, C. Optical circular dichroism of single-wall carbon nanotubes. Phys. Rev. B 73, 045401 (2006).

    Article  Google Scholar 

  16. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2009).

  17. Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    Article  Google Scholar 

  18. Yang, N. & Cohen, A. E. Local geometry of electromagnetic fields and its role in molecular multipole transitions. J. Phys. Chem. B 115, 5304–5311 (2011).

    Article  CAS  Google Scholar 

  19. Sioncke, S., Verbiest, T. & Persoons, A. Second-order nonlinear optical properties of chiral materials. Mater. Sci. Eng. R. Rep. 42, 115–155 (2003).

    Article  Google Scholar 

  20. Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17, 421–437 (2005).

    Article  CAS  Google Scholar 

  21. Persoons, A. Nonlinear optics, chirality, magneto-optics: a serendipitous road. Opt. Mater. Express 1, 5–16 (2011).

    Article  Google Scholar 

  22. Collins, J. T. et al. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater. 5, 1700182 (2017).

    Article  Google Scholar 

  23. Collins, J. et al. First observation of optical activity in hyper-Rayleigh scattering. Phys. Rev. X. 9, 011024 (2019).

    CAS  Google Scholar 

  24. Sachs, J., Gunther, J. P., Mark, A. G. & Fischer, P. Chiroptical spectroscopy of a freely diffusing single nanoparticle. Nat. Commun. 11, 4513 (2020).

    Article  CAS  Google Scholar 

  25. Ohnoutek, L. et al. Single nanoparticle chiroptics in a liquid: optical activity in hyper-Rayleigh scattering from Au helicoids. Nano Lett. 20, 5792–5798 (2020).

    Article  CAS  Google Scholar 

  26. Tang, Y., Cook, T. A. & Cohen, A. E. Limits on fluorescence detected circular dichroism of single helicene molecules. J. Phys. Chem. A 113, 6213–6216 (2009).

    Article  CAS  Google Scholar 

  27. Westphal, C., Bansmann, J., Getzlaff, M. & Schonhense, G. Circular dichroism in the angular distribution of photoelectrons from oriented CO molecules. Phys. Rev. Lett. 63, 151–154 (1989).

    Article  CAS  Google Scholar 

  28. Verbiest, T., Kauranen, M., Van Rompaey, Y. & Persoons, A. Optical activity of anisotropic achiral surfaces. Phys. Rev. Lett. 77, 1456 (1996).

    Article  CAS  Google Scholar 

  29. Yokoyama, A., Yoshida, M., Ishii, A. & Kato, Y. K. Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality. Phys. Rev. X 4, 011005 (2014).

    CAS  Google Scholar 

  30. Odom, T. W., Huang, J.-L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62 (1998).

    Article  CAS  Google Scholar 

  31. Liu, Z. et al. Determination of optical isomers for left-handed or right-handed chiral double-wall carbon nanotubes. Phys. Rev. Lett. 95, 187406 (2005).

    Article  Google Scholar 

  32. Saito, R., Dresselhaus, G. & Dresselhaus, M. Trigonal warping effect of carbon nanotubes. Phys. Rev. B 61, 2981 (2000).

    Article  CAS  Google Scholar 

  33. Shindo, Y., Nakagawa, M. & Ohmi, Y. On the problems of CD spectropolarimeters. II: artifacts in CD spectrometers. Appl. Spectrosc. 39, 860–868 (1985).

    Article  CAS  Google Scholar 

  34. Kuroda, R., Harada, T. & Shindo, Y. A solid-state dedicated circular dichroism spectrophotometer: development and application. Rev. Sci. Instrum. 72, 3802–3810 (2001).

    Article  CAS  Google Scholar 

  35. He, M., Zhang, S. & Zhang, J. Horizontal single-walled carbon nanotube arrays: controlled synthesis, characterizations, and applications. Chem. Rev. 120, 12592–12684 (2020).

    Article  CAS  Google Scholar 

  36. Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant numbers 52021006 (J. Zhang), 52025023 (K.L.) and 51991342 (K.L.); the Key R&D Programme of Guangdong Province with grant numbers 2020B010189001 (K.L.), 2019B010931001 (K.L.) and 2018B030327001 (K.L.); the National Key R&D Programme of China under grant numbers 2016YFA0300903 (K.L.), 2017YFA0303800 (K.L.) and 2016YFA0300804 (P.G.); the Strategic Priority Research Programme of Chinese Academy of Sciences with grant number XDB33000000 (K.L.); Beijing Natural Science Foundation under grant number JQ19004 (K.L.); Beijing Graphene Innovation Programme under grant number Z181100004818003 (K.L.); the Pearl River Talent Recruitment Programme of Guangdong Province with grant number 2019ZT08C321 (K.L.); National Equipment Programme of China under grant number ZDYZ2015-1 (X.B.); National Postdoctoral Programme for Innovative Talents under award number BX20190016 (C.L.) and China Postdoctoral Science Foundation under award numbers 2019M660280 (C.L.) and 2019M660281 (R.Q.).

Author information

Authors and Affiliations

Authors

Contributions

K.L. conceived and supervised the project. F.Y., Y.S. and H.M. designed and built the optical setup. F.Y., W.Y. and C.L. conducted the optical experiments. C.L. performed sample growth and the scanning tunnelling microscope experiments. Y.S., Y.Y., F.Y., W.Y. and H.M. contributed the theoretical calculations. R.Q., P.G. and X.B. conducted the transmission electron microscopy experiments. C.W., C.M., J. Zhao, Z.S., S.M., F.W. and J. Zhang suggested optical experiments. All of the authors discussed the results and wrote the paper.

Corresponding author

Correspondence to Kaihui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Synthesis of SWNTs.

a, Schematic of SWNTs growth across open slit by kite-flying growth mechanism. b, SEM image of the as-grown SWNTs.

Extended Data Fig. 2 Structure-dependent Ray-CD peak intensity.

a,b, Calculated mapping of Ray-CD peak intensity as a function of the diameter and chiral angle of S33 transition for semiconducting type I (a) and type II (b) nanotubes. c,d, Calculated (green triangles) versus experimental (orange circles) peak intensities of Ray-CD for S33 transitions as a function of diameter for type I (c) and type II (d) family. The chiral angle of selected nanotubes is around 19 ° (black lines in calculated mappings). e,f, Calculated (green triangles) versus experimental (orange circles) peak intensities of Ray-CD for S33 transitions as a function of the chiral angle for type I (e) and type II (f) family. The diameters of the selected nanotubes are around 2.0 nm (white lines in calculated mappings). Error bars are derived from absolute Ray-CD values of armchair samples.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1 and 2, Notes 1–7 and References.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, F., Yu, W., Liu, C. et al. Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. Nat. Nanotechnol. 16, 1073–1078 (2021). https://doi.org/10.1038/s41565-021-00953-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00953-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing