Skip to main content

Advertisement

Log in

Size dependent mechanistic activity of titanium dioxide nanoparticles for enhanced fibroblast cell proliferation and anti-bacterial activity

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Many biomedical applications, titanium dioxide (TiO2) nanoparticles are used. They have been used for drugs delivery and targeting, skin tone protection, reinforcement materials etc. It is biocompatible and non-toxic in nature. The healing of wounds are delayed mainly due to infections. Infections make the process of wound healing complex. Nanomaterials are used for enhancing wound healing mainly due to their ability to inhibit bacterial growth. Nanoparticles of TiO2 are synthesized using a chemical method. They are annealed at different temperature to increase the particle size. XRD (X-ray diffraction), FTIR (Fourier Transform infrared spectroscopy), and TEM (Transmission electron Microscopy) are used to classify the samples. The influence of particle size and phase transformation on fibroblast cell proliferation. F-actin, cell movement are analysed. It is found that the antimicrobial activity increases with decrease in particle size. This study confirms the utilization of TiO2 nanoparticles for wound healing applications.

Highlights

  • Influence of particle size on Fibroblast growth is analyzed.

  • Influence of particle size on antimicrobial activity is analyzed.

  • The role of F-actin is imaged.

  • Cell migration studies confirms enhanced wound healing.

  • Staining studies confirms the cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garcıa MC, Aldana AA, Tartara LI, Alovero F, Strumia MC, Manzo RH, Martinelli M, Jimenez-Kairuz AF (2017) Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr Polym 175:75–86

    Article  Google Scholar 

  2. Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 469:102–110

    Article  CAS  Google Scholar 

  3. Summa M, Russo D, Penna I, Margaroli N, Bayer IS, Bandiera T, Athanassiou A, Bertorelli R (2018) A biocompatible sodium alginate/povidone iodine film enhances wound healing Eur J Pharm Biopharm 122:17–24

    Article  CAS  Google Scholar 

  4. Prema D, Prakash J, Vignesh S, Veluchamy P, Ramachandran C, Samal DB, Oh DH, Sahabudeen S, Venkatasubbu GD (2020) Mechanism of inhibition of graphene oxide/zinc oxide nanocomposite against wound infection causing pathogens. Appl Nanosci 10(3):827–849

    Article  CAS  Google Scholar 

  5. Venkataprasanna KS, Prakash J, Vignesh S, Bharath G, Venkatesan M, Banat F, Sahabudeen S, Ramachandran S, Devanand Venkatasubbu G (2020) “Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application Int J Biol Macromol 143:744–762

    Article  CAS  Google Scholar 

  6. Prakash J, Venkataprasanna KSK, Prema D, Sahabudeen SM, Debashree Banita S, Venkatasubbu GD (2020) Investigation on photo-induced mechanistic activity of GO/TiO2 hybrid nanocomposite against wound pathogens. Toxicol Mech Methods 30(7):508–525

    Article  CAS  Google Scholar 

  7. Mesa A, Mythatha GSS, Lodi RS, et al (2021) Chitosan nanoparticles: an overview on preparation, characterization and biomedical applications. J Drug Deliv Sci Technol 49:393–427

  8. Srivastava P, Sharma PK, Muheem A, Warsi MH (2017) Magnetic nanoparticles: a review on stratagems of fabrication and its biomedical applications. Recent Pat Drug Deliv Formul 11:101–113

    Article  CAS  Google Scholar 

  9. Wang X, Zhong X, Li J, et al (2021) Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev https://doi.org/10.1039/D0CS00461H

  10. Jannesari M, Akhavan O, Madaah Hosseini HR, Bakhshi B (2020) Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl Mater Interfaces 12:35813–35825

    Article  CAS  Google Scholar 

  11. Akhavan O (2016) Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J Mater Chem B 4:3169–3190

    Article  CAS  Google Scholar 

  12. Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9:3593–3601

    Article  CAS  Google Scholar 

  13. Singh AV, Aditi AS, Gade WN, Vats T, Lenardi C, Paolo M (2010) Nanomaterials: new generation therapeutics in wound healing and tissue repair. Curr Nanosci 6:577–586

    Article  CAS  Google Scholar 

  14. Mazari SA, Ali E, Abro R et al. (2021) Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges – A review. J Environ Chem Eng 9:105028

    Article  CAS  Google Scholar 

  15. Prakash J, Venkatesan M, Bharath G, Anwer S, Veluswamy P, Prema D, Venkataprasanna KS, Devanand G (2019) Venkatasubbu. “Investigations on the in-vivo toxicity analysis of reduced graphene oxide/TiO2 nanocomposite in zebrafish embryo and larvae (Danio rerio)”. Appl Surf Sci 481:1360–1369

    Article  CAS  Google Scholar 

  16. Verma SK, Jha E, Panda PK et al. (2018) Mechanistic insight into size-dependent enhanced cytotoxicity of industrial antibacterial titanium oxide nanoparticles on colon cells because of reactive oxygen species quenching and neutral lipid alteration. ACS Omega 3:1244–1262

    Article  CAS  Google Scholar 

  17. Andersson PO, Lejon C, Ekstrand-Hammarström B et al. (2011) Polymorph- and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small 7:514–523

    Article  CAS  Google Scholar 

  18. Xiong D, Fang T, Yu L et al. (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  19. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  20. Akhavan O, Ghaderi E, Akhavan A (2013) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025

    Article  Google Scholar 

  21. G Devanand Venkatasubbu, R Baskar, T Anusuya, C Arun Seshan, Ramachandran Chelliah, Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens, Colloids and Surfaces B: Biointerfaces, 148(2016):600–606

  22. Padmanabhan A, Gosc EB, Bieberich CJ (2013) Stabilization of the prostate-specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim-1 in prostate cancer cells. J Cell Biochem 114:1050–1057

    Article  CAS  Google Scholar 

  23. Akhavan O, Ghaderi E (2013) Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5:10316–10326

    Article  CAS  Google Scholar 

  24. Jeon HJ, Kim GH (2014) Preparation and characterization of an electrospun polycaprolactone (PCL) fibrous mat and multi-layered PCL scaffolds having a nanosized pattern-surface for tissue regeneration. J Mater Chem B 2:171–180

    Article  CAS  Google Scholar 

  25. Shi J, Wang L, Zhang F, Li H, Lei L, Liu L, Chen Y (2010) Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Appl Mater Interfaces 2:1025–1030

    Article  CAS  Google Scholar 

  26. Ghosh S, Gopal Khan Gobinda, Mandal K, Samanta Anirban, Nambissan PMG (2013) Evolution of vacancy-type defects, phase transition, and intrinsic ferromagnetism during annealing of nanocrystalline TiO2 studied by positron annihilation spectroscopy. J Phys Chem C 117:8458–8467

    Article  CAS  Google Scholar 

  27. Li W, Ni C, Lin H, Huang CP, Shah SI (2004) Size dependence of thermal stability of TiO nanoparticles. J Appl Phys 96:6663–6668

    Article  CAS  Google Scholar 

  28. Wang CC, Ying JY (1999) Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11:3113–3120

    Article  CAS  Google Scholar 

  29. Qin W, Szpunar JA (2005) Origin of lattice strain in nanocrystalline materials. Philos Mag Lett. 85:649–656

    Article  CAS  Google Scholar 

  30. Moghaddam HM, Nasirian S (2012) Dependence of activation energy and latticestrain on TiOnanoparticles? Nanoscience Methods. 1:201–212

    Article  Google Scholar 

  31. Shannon RD (1964) Phase transformation studies in TiO supporting different defect mechanism in vacuum reduced and hydrogen reduced rutile. J Appl Phys 35:3414–3416

    Article  CAS  Google Scholar 

  32. Dillon SJ, Harmer MP (2007) Diffusion controlled abnormal grain growth in ceramics. Mater Res Forum 558–559:1227–1236

    Article  Google Scholar 

  33. Chen WX, Yu JS, Hu W et al. (2016) Titanate nanowire/NiO nanoflake core/shell heterostructured nanonanocomposite catalyst for methylene blue photodegradation. RSC Adv 6:67827–67832

    Article  CAS  Google Scholar 

  34. Memon H, Kumari N, Jatoi AW, Khoso NA (2017) Study of the indoor decontamination using nanocoated woven polyester fabric. Int Nano Lett 7:1–7

    Article  CAS  Google Scholar 

  35. Niranjan R, Kaushik M, Selvi RT, Prakash J, Venkataprasanna KS, Prema D, Pannerselvam B, Venkatasubbu GD (2019) PVA/SA/TiO2-CUR patch for enhanced wound healing application: In vitro and in vivo analysis. Int J Biol Macromolecules 138:704–717

    Article  CAS  Google Scholar 

  36. Sahbeni K, Sta I, Jlassi M, Kandyla M, Hajji M, Kompitsas M, Dimassi W (2017) Annealing temperature effect on the physical properties of titanium oxide thin films prepared by the sol-gel method. J Phys Chem J Biophysics 7:257

    Google Scholar 

  37. Singh NK, Singh SK, Dash D, Das Purkayastha BP, Roy JK, Maiti P (2012) Nanostructure controlled anti-cancer drug delivery using poly(ε-caprolactone) based nanohybrids. J Mater Chem 22:17853–17863

    Article  CAS  Google Scholar 

  38. Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316

    Article  CAS  Google Scholar 

  39. Filaments A (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  Google Scholar 

  40. Chand K, Cao D, Fouad DE et al. (2020) Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanoparticles: a comparative study. J Mol Liq 316:113821

    Article  CAS  Google Scholar 

  41. Maślana K, Żywicka A, Wenelska K, Mijowska E (2021) Boosting of antibacterial performance of cellulose based paper sheet via TiO2 nanoparticles. Int J Mol Sci 22:1451

    Article  Google Scholar 

  42. Memon H, Yasin S, Ali Khoso N, Hussain M (2015) Indoor decontamination textiles by photocatalytic oxidation: a review. J Nanotechnol 2015:e104142

    Article  Google Scholar 

  43. Seisenbaeva GA, Fromell K, Vinogradov VV, Terekhov AN, Pakhomov AV, Nilsson BO, Ekdahl KN, Vinogradov VV, Kessler VG (2017) Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci Rep 7:15448

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Department of Nanotechnology, SRM Institute of Science and Technology for providing the facility to carry out the work.

Author contributions

KSV and JP: Methodology, Validation, Investigation, Visualization, Writing—original draft. TA: Investigation, Validation. GDV: Conceptualization, Supervision, Validation, Writing—review & editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Devanand Venkatasubbu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataprasanna, K.S., Prakash, J., Anusuya, T. et al. Size dependent mechanistic activity of titanium dioxide nanoparticles for enhanced fibroblast cell proliferation and anti-bacterial activity. J Sol-Gel Sci Technol 99, 565–575 (2021). https://doi.org/10.1007/s10971-021-05600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05600-3

Keywords

Navigation