Skip to main content

Advertisement

Log in

Advances in hyperekplexia and other startle syndromes

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA (2006) Startle syndromes. Lancet Neurol 5(6):513–524. https://doi.org/10.1016/S1474-4422(06)70470-7

    Article  PubMed  Google Scholar 

  2. Saini A, Pandey S (2020) Hyperekplexia and other startle syndromes. J Neurol Sci 416:117051. https://doi.org/10.1016/j.jns.2020.117051

    Article  CAS  PubMed  Google Scholar 

  3. Bhidayasiri R, Truong D (2011) Startle syndromes. Handb Clin Neurol 100:421–430. https://doi.org/10.1016/B978-0-444-52014-2.00032-X

    Article  PubMed  Google Scholar 

  4. Meinck H (2006) Startle and its disorders. Neurophysiol Clin 36(5–6):357–364. https://doi.org/10.1016/j.neucli.2006.12.007

    Article  PubMed  Google Scholar 

  5. Bode A, Lynch JW (2014) The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain 7:2. https://doi.org/10.1186/1756-6606-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harvey RJ, Topf M, Harvey K, Rees MI (2008) The genetics of hyperekplexia: more than startle! Trends Genet 24(9):439–447. https://doi.org/10.1016/j.tig.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Winczewska-Wiktor A, Badura-Stronka M, Monies-Nowicka A, Nowicki M, Steinborn B, Latos-Bieleńska A et al (2016) A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol 16:35. https://doi.org/10.1186/s12883-016-0554-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies J, Chung S, Thomas R, Robinson A, Hammond C, Mullins J et al (2010) The glycinergic system in human startle disease: a genetic screening approach. Front Mol Neurosci 3:8. https://doi.org/10.1186/s12883-016-0554-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Safory H, Neame S, Shulman Y, Zubedat S, Radzishevsky I, Rosenberg D et al (2015) The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission. EMBO Rep 16(5):590–598. https://doi.org/10.1186/s12883-016-0554-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou L, Chillag KL, Nigro MA (2002) Hyperekplexia: a treatable neurogenetic disease. Brain Dev 24(7):669–674. https://doi.org/10.1016/s0387-7604(02)00095-5

    Article  PubMed  Google Scholar 

  11. Kirstein L, Silfverskiold BP (1958) A family with emotionally precipitated drop seizures. Acta Psychiatr Neurol Scand 33(4):471–476. https://doi.org/10.1111/j.1600-0447.1958.tb03533.x

    Article  CAS  PubMed  Google Scholar 

  12. Suhren OBG, Tuynman JA (1966) Hyperekplexia - a hereditary startle syndrome. J Neurol Sci 3:577–605

    Article  Google Scholar 

  13. Baizabal-Carvallo J, Jankovic J (2015) Stiff-person syndrome: insights into a complex autoimmune disorder. J Neurol Neurosurg Psychiatry 86(8):840–848. https://doi.org/10.1136/jnnp-2014-309201

    Article  PubMed  Google Scholar 

  14. Zhang C, Wang SG, Wang Y, Liu XL, Cao L (2019) Teaching Video NeuroImages: cautious walking gait in siblings with hereditary hyperekplexia. Neurology 92(17):e2068–e2069. https://doi.org/10.1212/WNL.0000000000007375

    Article  PubMed  Google Scholar 

  15. Koning-Tijssen M, Brouwer O (2000) Hyperekplexia in the first year of life. Mov Disord 15(6):1293–1296. https://doi.org/10.1002/1531-8257(200011)15:6%3c1293::aid-mds1047%3e3.0.co;2-k

    Article  CAS  PubMed  Google Scholar 

  16. Praveen V, Patole SK, Whitehall JS (2001) Hyperekplexia in neonates. Postgrad Med J 77(911):570–572. https://doi.org/10.1136/pmj.77.911.570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russo S, Fossati B, Toffetti M, Lanzone J, Cardani R, Meola G (2017) Clinical Reasoning: a 35-year-old woman with hyperstartling, stiffness, and accidental falls: a startling diagnosis. Neurology 88(5):e38–e41. https://doi.org/10.1212/WNL.0000000000003567

    Article  PubMed  Google Scholar 

  18. Dreissen YE, Tijssen MA (2012) The startle syndromes: physiology and treatment. Epilepsia 53(Suppl 7):3–11. https://doi.org/10.1111/j.1528-1167.2012.03709.x

    Article  PubMed  Google Scholar 

  19. Lee Y, Kim NY, Hong S, Chung SJ, Jeong SH, Lee PH et al (2017) Familiar hyperekplexia, a potential cause of cautious gait: a new Korean case and a systematic review of phenotypes. J Mov Disord 10(1):53–58. https://doi.org/10.14802/jmd.16044

  20. Huang Z, Lian Y, Xu H, Zhang H (2018) Weird laughing in hyperekplexia: a new phenotype associated with a novel mutation in the GLRA1 gene? Seizure 58:6–8. https://doi.org/10.1016/j.seizure.2018.03.017

    Article  PubMed  Google Scholar 

  21. Thomas RH, Chung SK, Wood SE, Cushion TD, Drew CJ, Hammond CL et al (2013) Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay. Brain 136(Pt 10):3085–3095. https://doi.org/10.1093/brain/awt207

    Article  PubMed  Google Scholar 

  22. Al-Owain M, Colak D, Al-Bakheet A, Al-Hashmi N, Shuaib T, Al-Hemidan A et al (2012) Novel mutation in GLRB in a large family with hereditary hyperekplexia. Clin Genet 81(5):479–484. https://doi.org/10.1111/j.1399-0004.2011.01661.x

    Article  CAS  PubMed  Google Scholar 

  23. Mine J, Taketani T, Yoshida K, Yokochi F, Kobayashi J, Maruyama K et al (2015) Clinical and genetic investigation of 17 Japanese patients with hyperekplexia. Dev Med Child Neurol 57(4):372–377. https://doi.org/10.1111/dmcn.12617

    Article  PubMed  Google Scholar 

  24. Li H, Yang ZX, Xue J, Qian P, Liu XY (2017) Clinical and genetic analysis of hyperekplexia in a Chinese child and literature review. Zhonghua Er Ke Za Zhi 55(2):120–124. https://doi.org/10.3760/cma.j.issn.0578-1310.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  25. Zhan F, Zhang C, Wang S, Zhu Z, Chen G, Zhao M et al (2020) Excessive startle with novel GLRA1 mutations in 4 Chinese patients and a literature review of GLRA1-related hyperekplexia. J Clin Neurol 16(2):230–236. https://doi.org/10.3988/jcn.2020.16.2.230

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tohier C, Roze JC, David A, Veccierini MF, Renaud P, Mouzard A (1991) Hyperexplexia or stiff baby syndrome. Arch Dis Child 66(4):460–461. https://doi.org/10.1136/adc.66.4.460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vigevano F, Di Capua M, Dalla Bernardina B (1989) Startle disease: an avoidable cause of sudden infant death. Lancet 1(8631):216. https://doi.org/10.1016/s0140-6736(89)91226-9

    Article  CAS  PubMed  Google Scholar 

  28. Zafra F, lbáñez I, Giménez C (2016) Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies. Neuronal Signal 1(1):NS20160009. https://doi.org/10.1042/NS20160009

  29. Lynch J (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56(1):303–309. https://doi.org/10.1016/j.neuropharm.2008.07.034

    Article  CAS  PubMed  Google Scholar 

  30. Chalphin A, Saha M (2010) The specification of glycinergic neurons and the role of glycinergic transmission in development. Front Mol Neurosci 3:11. https://doi.org/10.3389/fnmol.2010.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Betz H, Gomeza J, Armsen W, Scholze P, Eulenburg V (2006) Glycine transporters: essential regulators of synaptic transmission. Biochem Soc Trans 34(Pt 1):55–58. https://doi.org/10.1042/BST0340055

    Article  CAS  PubMed  Google Scholar 

  32. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58(5–6):760–793. https://doi.org/10.1007/pl00000899

    Article  CAS  PubMed  Google Scholar 

  33. Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A 85(19):7394–7398. https://doi.org/10.1073/pnas.85.19.7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9(6):1155–1161. https://doi.org/10.1016/0896-6273(92)90073-m

    Article  CAS  PubMed  Google Scholar 

  35. Kneussel M, Betz H (2000) Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci 23(9):429–435. https://doi.org/10.1016/s0166-2236(00)01627-1

    Article  CAS  PubMed  Google Scholar 

  36. Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H et al (2005) The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45(5):727–739. https://doi.org/10.1016/j.neuron.2005.01.028

    Article  CAS  PubMed  Google Scholar 

  37. Schmieden V, Kuhse J, Betz H (1992) Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation. EMBO J 11(6):2025–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirsch J, Betz H (1993) Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Res 621(2):301–310. https://doi.org/10.1016/0006-8993(93)90120-c

    Article  CAS  PubMed  Google Scholar 

  39. Kirsch J, Betz H (1995) The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci 15(6):4148–4156. https://doi.org/10.1523/JNEUROSCI.15-06-04148.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meyer G, Kirsch J, Betz H, Langosch D (1995) Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15(3):563–572. https://doi.org/10.1016/0896-6273(95)90145-0

    Article  CAS  PubMed  Google Scholar 

  41. Kins S, Betz H, Kirsch J (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3(3):22–29. https://doi.org/10.1038/71096

    Article  CAS  PubMed  Google Scholar 

  42. Beato M, Groot-Kormelink P, Colquhoun D, Sivilotti L (2002) Openings of the rat recombinant alpha 1 homomeric glycine receptor as a function of the number of agonist molecules bound. J Gen Physiol 119(5):443–466. https://doi.org/10.1085/jgp.20028530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calimet N, Simoes M, Changeux J, Karplus M, Taly A, Cecchini M (2013) A gating mechanism of pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 110(42):E3987-3996. https://doi.org/10.1073/pnas.1313785110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou G, Xia J, Han Q, Liu D, Xiong W (2020) The synthetic cannabinoid dehydroxylcannabidiol restores the function of a major GABAA receptor isoform in a cell model of hyperekplexia. J Biol Chem 295(1):138–145. https://doi.org/10.1074/jbc.RA119.011221

    Article  CAS  PubMed  Google Scholar 

  45. López-Corcuera B, Arribas-González E, Aragón C (2019) Hyperekplexia-associated mutations in the neuronal glycine transporter 2. Neurochem Int 123:95–100. https://doi.org/10.1016/j.neuint.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  46. Shiang R, Ryan S, Zhu Y, Hahn A, O’Connell P, Wasmuth J (1993) Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5(4):351–358. https://doi.org/10.1038/ng1293-351

    Article  CAS  PubMed  Google Scholar 

  47. Bode A, Wood SE, Mullins JG, Keramidas A, Cushion TD, Thomas RH et al (2013) New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms. J Biol Chem 288(47):33745–33759. https://doi.org/10.1074/jbc.M113.509240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung SK, Vanbellinghen JF, Mullins JG, Robinson A, Hantke J, Hammond CL et al (2010) Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci 30(28):9612–9620. https://doi.org/10.1523/JNEUROSCI.1763-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Breitinger HG, Villmann C, Becker K, Becker CM (2001) Opposing effects of molecular volume and charge at the hyperekplexia site alpha 1(P250) govern glycine receptor activation and desensitization. J Biol Chem 276(32):29657–29663. https://doi.org/10.1074/jbc.M100446200

    Article  CAS  PubMed  Google Scholar 

  50. Hirzel K, Muller U, Latal AT, Hulsmann S, Grudzinska J, Seeliger MW et al (2006) Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron 52(4):679–690. https://doi.org/10.1016/j.neuron.2006.09.035

    Article  CAS  PubMed  Google Scholar 

  51. Laube B, Kuhse J, Rundström N, Kirsch J, Schmieden V, Betz H (1995) Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol 483(Pt 3):613–619. https://doi.org/10.1113/jphysiol.1995.sp020610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou N, Wang CH, Zhang S, Wu DC (2013) The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia. J Neurosci 33(45):17675–17681. https://doi.org/10.1523/JNEUROSCI.3240-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Al-Futaisi A, Al-Kindi M, Al-Mawali A, Koul R, Al-Adawi S, Al-Yahyaee S (2012) Novel mutation of GLRA1 in Omani families with hyperekplexia and mild mental retardation. Pediatr Neurol 46(2):89–93. https://doi.org/10.1016/j.pediatrneurol.2011.11.008

    Article  PubMed  Google Scholar 

  54. Zhang Y, Bode A, Nguyen B, Keramidas A, Lynch J (2016) Investigating the mechanism by which gain-of-function mutations to the alpha1 glycine receptor cause hyperekplexia. J Biol Chem 291(29):15332–15341. https://doi.org/10.1074/jbc.M116.728592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vuilleumier P, Fritsche R, Schliessbach J, Schmitt B, Arendt-Nielsen L, Zeilhofer H et al (2018) Mutations affecting glycinergic neurotransmission in hyperekplexia increase pain sensitivity. Brain 141(1):63–71. https://doi.org/10.1093/brain/awx289

    Article  PubMed  Google Scholar 

  56. Haus U, Späth M, Färber L (2004) Spectrum of use and tolerability of 5-HT3 receptor antagonists. Scand J Rheumatol Suppl 119:12–18

    Article  CAS  PubMed  Google Scholar 

  57. Blaesse P, Airaksinen M, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61(6):820–838. https://doi.org/10.1016/j.neuron.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  58. Rees M, Harvey K, Pearce B, Chung S, Duguid I, Thomas P et al (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38(7):801–806. https://doi.org/10.1038/ng1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carta E, Chung S, James V, Robinson A, Gill J, Remy N et al (2012) Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease. J Biol Chem 287(34):28975–28985. https://doi.org/10.1074/jbc.M112.372094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schaefer N, Roemer V, Janzen D, Villmann C (2018) Impaired glycine receptor trafficking in neurological diseases. Front Mol Neurosci 11:291. https://doi.org/10.3389/fnmol.2018.00291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arribas-González E, de Juan-Sanz J, Aragón C, López-Corcuera B (2015) Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia. J Biol Chem 290(4):2150–2165. https://doi.org/10.1074/jbc.M114.587055

    Article  CAS  PubMed  Google Scholar 

  62. Giménez C, Pérez-Siles G, Martínez-Villarreal J, Arribas-González E, Jiménez E, Núñez E et al (2012) A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J Biol Chem 287(34):28986–29002. https://doi.org/10.1074/jbc.M111.319244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rees M, Lewis T, Kwok J, Mortier G, Govaert P, Snell R et al (2002) Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11(7):853–860. https://doi.org/10.1093/hmg/11.7.853

    Article  CAS  PubMed  Google Scholar 

  64. SK. C, A. B, TD. C, RH. T, C. H, SE. W, et al (2013) GLRB is the third major gene of effect in hyperekplexia. Hum Mol Genet 22(5):927–940. https://doi.org/10.1093/hmg/dds498

    Article  CAS  Google Scholar 

  65. VM. J, A. B, SK. C, JL. G, M. N, FM. C, et al (2013) Novel missense mutations in the glycine receptor beta subunit gene (GLRB) in startle disease. Neurobiol Dis 52:137–149. https://doi.org/10.1016/j.nbd.2012.12.001

    Article  CAS  Google Scholar 

  66. Alvarez F (2017) Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 129:50–65. https://doi.org/10.1016/j.brainresbull.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  67. MI. R, K. H, Ward H, White J, Evans L, Duguid I, et al (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 278(27):24688–24696. https://doi.org/10.1074/jbc.M301070200

    Article  CAS  Google Scholar 

  68. Harvey K, Duguid I, Alldred M, Beatty S, Ward H, Keep N et al (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24(25):5816–5826. https://doi.org/10.1523/JNEUROSCI.1184-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey R et al (2007) Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J 26(17):3888–3899. https://doi.org/10.1038/sj.emboj.7601819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wisniewska M, Nagalski A, Dabrowski M, Misztal K, Kuznicki J (2012) Novel beta-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability. BMC Genomics 13:635. https://doi.org/10.1186/1471-2164-13-635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuechler A, Willemsen M, Albrecht B, Bacino C, Bartholomew D, van Bokhoven H et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134(1):97–109. https://doi.org/10.1007/s00439-014-1498-1

    Article  CAS  PubMed  Google Scholar 

  72. Dresbach T, Nawrotzki R, Kremer T, Schumacher S, Quinones D, Kluska M et al (2008) Molecular architecture of glycinergic synapses. Histochem Cell Biol 130(4):617–633. https://doi.org/10.1007/s00418-008-0491-y

    Article  CAS  PubMed  Google Scholar 

  73. Alfadhel M, Nashabat M, Qahtani H, Alfares A, Mutairi F, Shaalan H et al (2016) Mutation in SLC6A9 encoding a glycine transporter causes a novel form of non-ketotic hyperglycinemia in humans. Hum Genet 135(11):1263–1268. https://doi.org/10.1007/s00439-016-1719-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aubrey K, Rossi F, Ruivo R, Alboni S, Bellenchi G, Le Goff A et al (2007) The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype. J Neurosci 27(23):6273–6281. https://doi.org/10.1523/JNEUROSCI.1024-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parra L, Baust T, El Mestikawy S, Quiroz M, Hoffman B, Haflett J et al (2008) The orphan transporter Rxt1/NTT4 (SLC6A17) functions as a synaptic vesicle amino acid transporter selective for proline, glycine, leucine, and alanine. Mol Pharmacol 74(6):1521–1532. https://doi.org/10.1124/mol.108.050005

    Article  CAS  PubMed  Google Scholar 

  76. Ehmsen J, Liu Y, Wang Y, Paladugu N, Johnson A, Rothstein J et al (2016) The astrocytic transporter SLC7A10 (Asc-1) mediates glycinergic inhibition of spinal cord motor neurons. Sci Rep 6:35592. https://doi.org/10.1038/srep35592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Horiuchi M, Loebrich S, Brandstaetter J, Kneussel M, Betz H (2005) Cellular localization and subcellular distribution of Unc-33-like protein 6, a brain-specific protein of the collapsin response mediator protein family that interacts with the neuronal glycine transporter 2. J Neurochem 94(2):307–315. https://doi.org/10.1111/j.1471-4159.2005.03198.x

    Article  CAS  PubMed  Google Scholar 

  78. Ohno K, Koroll M, El Far O, Scholze P, Gomeza J, Betz H (2004) The neuronal glycine transporter 2 interacts with the PDZ domain protein syntenin-1. Mol Cell Neurosci 26(4):518–529. https://doi.org/10.1016/j.mcn.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  79. Engel JJ, (ILAE). ILAE, (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 42(6):796–803. https://doi.org/10.1046/j.1528-1157.2001.10401.x

    Article  PubMed  Google Scholar 

  80. Z. Y, X. L, J. Q, Y. Z, X. B, S. W, et al (2010) Clinical and electrophysiological characteristics of startle epilepsy in childhood. Clin Neurophysiol 121(5):658–664. https://doi.org/10.1016/j.clinph.2009.12.020

    Article  Google Scholar 

  81. El-Abassi R, Soliman M, Villemarette-Pittman N, England J (2019) SPS: Understanding the complexity. J Neurol Sci 404:137–149. https://doi.org/10.1016/j.jns.2019.06.021

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Prof. Cao is in charge of National Natural Science Foundation of China (No.81870889 and 82071258).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Zhan and Dr. Wang contributed in manuscript preparation by performing the literature review and writing the first draft. Prof. Cao critically revised the work.

Corresponding author

Correspondence to Li Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Informed consent

We declare that all authors and contributors have participated sufficiently in this work and approved the final version of the manuscript. No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Fx., Wang, SG. & Cao, L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 42, 4095–4107 (2021). https://doi.org/10.1007/s10072-021-05493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05493-8

Keywords

Navigation