Skip to main content
Log in

Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Despite great developments in inertial microfluidics, there is still a lack of knowledge to precisely define the particles’ behavior in the microchannels. In the present study, as a prerequisite to experimental studies, numerical simulations have been used to study the capture efficiency of target particles in the contraction–expansion microchannel, aiming to provide an estimation of the conditions at which the channel performs best. Fluid analysis based on Navier–Stokes equations is conducted using the finite element method to determine the streamlines and vortices. The highest capture efficiency for 10, 15, and 19-micron particles occurs when the center of the vortex is approximately in the middle of the wide section (at the flow rate of 0.35 ml/min). In addition to investigating the effect of particle diameter and input flow rate, the effect of channel geometry parameters (channel height and initial length of the channel) on particle trapping has also been studied. Also, to consider great interest in separating different-sized bioparticles from a sample, a three-stage platform has been designed to separate four types of bone marrow cells and evaluate the possibility of using contraction–expansion channels in this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\({C}_{L}\) :

Lift coefficient

\({D}_{h}\) :

Hydraulic diameter of the channel, μm

\({d}_{p}\) :

Particle diameter, μm

\({F}_{D}\) :

Drag force, N

\({F}_{L}\) :

Net lift force, N

\({F}_{LS}\) :

Shear-gradient lift force, N

\({F}_{LW}\) :

Wall lift force, N

\(H\) :

Channel height, μm

\(h\) :

Channel half width, μm

\({L}_{C}\) :

Contraction region length, μm

\({L}_{E}\) :

Expansion region length, μm

\({Re}_{C}\) :

Channel Reynolds number

\({Re}_{P}\) :

Particle Reynolds number

\({U}_{m}\) :

Mean flow velocity, m/s

\({U}_{max}\) :

Maximum flow velocity, m/s

\({u}_{f}\) :

Fluid velocity, m/s

\({u}_{p}\) :

Particle velocity, m/s

\(W\) :

Channel width, μm

\({W}_{C}\) :

Contraction region width, μm

\({W}_{E}\) :

Expansion region width, μm

\({X}_{eq}\) :

The distance from channel center to the lateral equilibrium position, μm

\(\mu\) :

Fluid dynamic viscosity, N.s/m2

\(\rho\) :

Fluid density, kg/m3

References

  • H. Amini, W. Lee, D. Di Carlo, Lab Chip 14, 2739 (2014)

    Article  Google Scholar 

  • H. Amini, E. Sollier, M. Masaeli, Y. Xie, B. Ganapathysubramanian, H.A. Stone, D. Di Carlo, Nat. Commun. 4, 1 (2013)

    Article  Google Scholar 

  • H. Amini, E. Sollier, W.M. Weaver, D. Di Carlo, Proc. Natl. Acad. Sci. u. s. a. 109, 11593 (2012)

    Article  Google Scholar 

  • J.F. Ashley, C.N. Bowman, R.H. Davis, AIChE J. 59, 3444 (2013)

    Article  Google Scholar 

  • E.S. Asmolov, J. Fluid Mech. 381, 63 (1999)

    Article  Google Scholar 

  • M.F. Basle, P. Mazaud, K. Malkani, M.F. Chretien, M.F. Moreau, A. Rebel, Bone 9, 1 (1988)

    Article  Google Scholar 

  • C. Baustian, S. Hanley, R. Ceredig, Stem Cell Res. Ther. 6, 151 (2015)

    Article  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, N. Kaval, C.J. Seliskar, I. Papautsky, Biomed. Microdevices 12, 187 (2010)

    Article  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, and I. Papautsky, Phys. Fluids 20, 101702 (2008)

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Microfluid. Nanofluidics 7, 217 (2009)

    Article  Google Scholar 

  • D. Di Carlo, Lab Chip 9, 3038 (2009)

    Article  Google Scholar 

  • D. Di Carlo, J. F. Edd, K. J. Humphry, H.A. Stone, and M. Toner, Phys. Rev. Lett. 102, 094503 (2009)

  • D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. u. s. a. 104, 18892 (2007)

  • A. Castagnola, S. Eda, J.L. Jurat-Fuentes, Differentiation 81, 192 (2011)

    Article  Google Scholar 

  • B. Çetin, D. Li, Electrophoresis 32, 2410 (2011)

    Article  Google Scholar 

  • A.J. Chung, Biochip J. 13, 53 (2019)

    Article  Google Scholar 

  • A.J. Chung, D.R. Gossett, D. Di Carlo, Small 9, 685 (2013)

    Article  Google Scholar 

  • E. Dick, in Comput. Fluid Dyn., edited by J. F. Wendt (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 235–274.

  • C. Farnier, S. Krief, M. Blache, F. Diot-Dupuy, G. Mory, P. Ferre, R. Bazin, Int. J. Obes. 27, 1178 (2003)

    Article  Google Scholar 

  • T.P. Forbes, S.P. Forry, Lab Chip 12, 1471 (2012)

    Article  Google Scholar 

  • R. A. Freitas, Nanomedicine: Basic Capabilities (Landes Bioscience, 1999)

    Google Scholar 

  • M. Hejazian, W. Li, N.T. Nguyen, Lab Chip 15, 959 (2015)

    Article  Google Scholar 

  • B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974)

  • H.W. Hou, M.E. Warkiani, B.L. Khoo, Z.R. Li, R.A. Soo, D.S.W. Tan, W.T. Lim, J. Han, A.A.S. Bhagat, C.T. Lim, Sci. Rep. 3, 1 (2013)

  • L.R. Huang, EC. Cox, R.H. Austin, and J. C. Sturm, Science. 304, 987 (2004)

  • G.Y. Kim, J.I. Han, J.K. Park, Biochip J. 12, 257 (2018)

    Article  Google Scholar 

  • J.G. Kralj, M.T.W. Lis, M.A. Schmidt, K.F. Jensen, Anal. Chem. 78, 5019 (2006)

    Article  Google Scholar 

  • T. Laurell, F. Petersson, A. Nilsson, Chem. Soc. Rev. 36, 492 (2007)

    Article  Google Scholar 

  • M.G. Lee, S. Choi, J.K. Park, Lab Chip 9, 3155 (2009)

    Article  Google Scholar 

  • M. Li, W.H. Li, J. Zhang, G. Alici, W. Wen, J. Phys. D. Appl. Phys. 47, 063001 (2014)

  • C.J. Logothetis, S.H. Lin, Nat. Rev. Cancer 5, 21 (2005)

    Article  Google Scholar 

  • K. Loutherback, K.S. Chou, J. Newman, J. Puchalla, R.H. Austin, J.C. Sturm, Microfluid. Nanofluidics 9, 1143 (2010)

    Article  Google Scholar 

  • A.J. MacH, J.H. Kim, A. Arshi, S.C. Hur, D. Di Carlo, Lab Chip 11, 2827 (2011)

    Article  Google Scholar 

  • R.S. Mahla, Int. J. Cell Biol. 2016, 6940283 (2016)

  • J.M. Martel, M. Toner, Annu. Rev. Biomed. Eng. 16, 371 (2014)

    Article  Google Scholar 

  • M.A.M. Ali, A.B.A. Kayani, L.Y. Yeo, A.F. Chrimes, M.Z. Ahmad, K.K. Ostrikov, B.Y. Majlis, Biomed. Microdevices 20, 1 (2018)

  • S. Miltenyi, W. Müller, W. Weichel, A. Radbruch, Cytometry 11, 231 (1990)

    Article  Google Scholar 

  • B.R. Mutlu, J.F. Edd, M. Toner, Proc. Natl. Acad. Sci. 115, 7682 (2018)

    Article  Google Scholar 

  • N. B. Nardi and L. da Silva Meirelles, in Stem Cells, edited by A. M. Wobus and K. R. Boheler (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 249–282.

  • N. Pamme, Lab Chip 7, 1644 (2007)

    Article  Google Scholar 

  • J.S. Park, S.H. Song, and H. Il Jung, Lab Chip 9, 939 (2009)

    Article  Google Scholar 

  • F. Petersson, L. Åberg, A.M. Swärd-Nilsson, T. Laurell, Anal. Chem. 79, 5117 (2007)

    Article  Google Scholar 

  • D.J. Rickard, M. Kassem, T.E. Hefferan, G. Sarkar, T.C. Spelsberg, B.L. Riggs, J. Bone Miner. Res. 11, 312 (1996)

    Article  Google Scholar 

  • G. Segré, A. Silberberg, Nature 189, 209 (1961)

    Article  Google Scholar 

  • F.T. Smith, J. Fluid Mech. 71, 15 (1975)

    Article  Google Scholar 

  • E. Sollier, D.E. Go, J. Che, D.R. Gossett, S. O’Byrne, W.M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R.P. Kulkarni, D. Di Carlo, Lab Chip 14, 63 (2014)

    Article  Google Scholar 

  • H. Song, J.M. Rosano, Y. Wang, C.J. Garson, B. Prabhakarpandian, K. Pant, G.J. Klarmann, A. Perantoni, L.M. Alvarez, E. Lai, Lab Chip 15, 1320 (2015)

    Article  Google Scholar 

  • H.A. Stone, S. Kim, AIChE J. 47, 1250 (2001)

    Article  Google Scholar 

  • R.S.W. Thomas, P.D. Mitchell, R.O.C. Oreffo, H. Morgan, Biomicrofluidics 4, 022806 (2010)

  • N. Uchida, D.W. Buck, D. He, M.J. Reitsma, M. Masek, T.V. Phan, A.S. Tsukamoto, F.H. Gage, I.L. Weissman, Proc. Natl. Acad. Sci. u. s. a. 97, 14720 (2000)

    Article  Google Scholar 

  • Z. Wang, J. Zhe, Lab Chip 11, 1280 (2011)

    Article  Google Scholar 

  • C.R. Wheeless, J.A. Nunley, J.R. Urbaniak, Wheeless’ Textbook of Orthopaedics (Data Trace Internet Publishing, LLC, 2016)

    Google Scholar 

  • Z. Wu, Y. Chen, M. Wang, A.J. Chung, Lab Chip 16, 532 (2016)

    Article  Google Scholar 

  • N. Xiang, Z. Ni, Biomed. Microdevices 17, 1 (2015)

    Article  Google Scholar 

  • M. Yamada, M. Nakashima, M. Seki, Anal. Chem. 76, 5465 (2004)

    Article  Google Scholar 

  • J. Zhang, M. Li, W.H. Li, G. Alici, J. Micromechanics Microengineering 23, 085023 (2013)

  • J. Zhou, P.V. Giridhar, S. Kasper, I. Papautsky, Lab Chip 13, 1919 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Ali Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, M.M., Hosseini, S.A., Sadatsakkak, S.a. et al. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting. Biomed Microdevices 23, 41 (2021). https://doi.org/10.1007/s10544-021-00577-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00577-w

Keywords

Navigation