Skip to main content
Log in

Valorization of Pineapple Waste: a Review on How the Fruit’s Potential Can Reduce Residue Generation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Pineapple is a fruit of unique appearance and flavor, consumed in natura or processed to obtain different products. However, the processing step generates a series of residues such as crown, stem, cylinder, leaves, and pomace, which have been widely studied due to the high amount of bioactive compounds, dietary fibers, and commercial enzymes found. Different government institutions already established laws detailing treatments required for fruits, like pineapple, and other food waste, either for reuse or disposal. Public policies and waste reuse are necessary to achieve sustainable development, expanding the possibilities for discovering new products and compounds. The current review analyzed different propositions from the literature on the application and valorization of pineapple waste, besides presenting industrial applications for these residues and legislative aspects related to residue treatment policies of different governmental institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. TRENDS Biotechnol 19:172–177. https://doi.org/10.1007/978-3-540-95991-5-82

    Article  PubMed  Google Scholar 

  2. European Union (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098#ntr4-L_2008312EN.01000301-E0004. Accessed 10 Nov 2020

  3. BRASIL (2010) Law No. 12,305 / 10, of August 2, 2010: Institutes the National Solid Waste Policy; amends Law No. 9,605, of February 12, 1998; and make other arrangements (in Portuguese). Diário Oficial da União, Brasília

  4. European Commission (2010) Preparatory study on food waste across EU 27. https://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf. Accessed 10 Nov 2020

  5. Sadh PK, Kumar S, Chawla P, Duhan JS (2018) Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (By-Products). Molecules 23:1–33. https://doi.org/10.3390/molecules23102560

    Article  CAS  Google Scholar 

  6. Socas-Rodríguez B, Álvarez-Rivera G, Valdés A et al (2021) Food by-products and food wastes: are they safe enough for their valorization? Trends Food Sci Technol 114:133–147. https://doi.org/10.1016/j.tifs.2021.05.002

    Article  CAS  Google Scholar 

  7. Ancos B, Sánchez-Moreno C, González-Aguilar GA (2017) Pineapple composition and nutrition. In: Lobo MG, Paull RE (eds) Handbook of pineapple technology: postharvest science, processing and nutrition, 1st edn. Wiley, Hoboken, pp 221–239

    Google Scholar 

  8. Wali N (2018) Pineapple (Ananas comosus). In: Nabavi S, Silva AS (eds) Nonvitamin and nonmineral nutritional supplements, 1st edn. Academic Press, Cambridge, pp 367–373

    Google Scholar 

  9. Dorta E, Sogi DS (2017) Value added processing and utilization of pineapple by-products. In: Lobo MG, Paull RE (eds) Handbook of pineapple technology: postharvest science, processing and nutrition, 1st edn. Wiley, pp 196–220

  10. Santos MCL dos, Villac T (2019) Law and public management of solid waste in Brazil. In: Sustainable resource recovery and zero waste approaches. Elsevier B.V., pp 101–103

  11. Ministry of the Environment (2020) National policy for solid waste (in Portuguese). https://www.mma.gov.br/cidades-sustentaveis/residuos-solidos/politica-nacional-de-residuos-solidos. Accessed 07 Nov 2020

  12. EPA (2020) Resource Conservation and Recovery Act (RCRA) Laws and Regulations. https://www.epa.gov/rcra. Accessed 24 Nov 2020

  13. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34:58–69. https://doi.org/10.1016/j.tibtech.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  14. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) At a glance: a global picture of solid waste management. In: What a waste 2.0: a global snapshot of solid waste management to 2050, Urban Deve. World Bank, Washington, pp 17–37

  15. FAO (2013) Food wastage footprint: Impacts on natural resources. http://www.fao.org/3/i3347e/i3347e.pdf. Accessed 10 July 2021

  16. Sharma P, Gaur VK, Kim SH, Pandey A (2020) Microbial strategies for bio-transforming food waste into resources. Bioresour Technol 299:122580. https://doi.org/10.1016/j.biortech.2019.122580

    Article  CAS  PubMed  Google Scholar 

  17. O’Connor J, Hoang SA, Bradney L et al (2021) A review on the valorisation of food waste as a nutrient source and soil amendment. Environ Pollut 272:115985. https://doi.org/10.1016/j.envpol.2020.115985

    Article  CAS  PubMed  Google Scholar 

  18. Karas PA, Perruchon C, Karanasios E et al (2016) Integrated biodepuration of pesticide-contaminated wastewaters from the fruit-packaging industry using biobeds: Bioaugmentation, risk assessment and optimized management. J Hazard Mater 320:635–644. https://doi.org/10.1016/j.jhazmat.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  19. Ng HS, Kee PE, Yim HS et al (2020) Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour Technol 302:122889. https://doi.org/10.1016/j.biortech.2020.122889

    Article  CAS  PubMed  Google Scholar 

  20. Usmani Z, Sharma M, Awasthi AK et al (2021) Minimizing hazardous impact of food waste in a circular economy – advances in resource recovery through green strategies. J Hazard Mater 416:126154. https://doi.org/10.1016/j.jhazmat.2021.126154

    Article  CAS  PubMed  Google Scholar 

  21. Tusseau-Vuillemin MH (2001) Do food processing industries contribute to the eutrophication of aquatic systems? Ecotoxicol Environ Saf 50:143–152. https://doi.org/10.1006/eesa.2001.2083

    Article  CAS  PubMed  Google Scholar 

  22. Kowalska H, Czajkowska K, Cichowska J, Lenart A (2017) What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci Technol 67:150–159. https://doi.org/10.1016/j.tifs.2017.06.016

    Article  CAS  Google Scholar 

  23. Sousa MSB, Vieira LM, da Silva M, de JM, de Lima A, (2011) Nutritional characterization and antioxidant compounds in tropical fruit pulp residues (in Portuguese). Cienc e Agrotecnologia 35:554–559. https://doi.org/10.1590/S1413-70542011000300017

    Article  CAS  Google Scholar 

  24. Gondim JAM, Moura MDFV, Dantas AS et al (2005) Centesimal composition and minerals in peels of fruits (in Portuguese). Ciência e Tecnol Aliment 25:825–827

    Article  Google Scholar 

  25. da Silva LMR, de Figueiredo EAT, Ricardo NMPS et al (2014) Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem 143:398–404. https://doi.org/10.1016/j.foodchem.2013.08.001

    Article  CAS  Google Scholar 

  26. Crestani M, Barbieri RL, Hawerroth FJ et al (2010) From the Americas to the world - origin, domestication and dispersion of pineapples (in Portuguese). Cienc Rural 40:1473–1483. https://doi.org/10.1590/s0103-84782010000600040

    Article  Google Scholar 

  27. Hassan A, Othman Z, Siriphanich J (2011) Pineapple (Ananas comosus L. Merr.). In: Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing Limited, pp 194–218e

  28. Reinhardt DH, Souza LF da S, Cabral JRS (2000) Pineapple. Production: technical aspects (in portuguese). ABACAXI Produção Aspectos Técnicos. Brasília: Embrapa

  29. Sun GM, Zhang XM, Soler A, Marie-Alphonsine PA (2015) Nutritional composition of pineapple (Ananas comosus (L.) Merr.). In: Simmonds MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars, 1st edn. Academic Press, Cambridge, pp 609–637

    Google Scholar 

  30. Bartholomew DP, Paull RE, Rohrbach KG (2003) The pineapple: botany, production and uses. CABI Publishing, Wallingford

    Book  Google Scholar 

  31. Py C, Lacoeuilhe J-J, Teisson C (1987) The pineapple: cultivation and uses. G.P. Maisonneuve & Larose, Paris

    Google Scholar 

  32. Cabral JRS, Junghans DT (2003) Pineapple varieties (in portguese). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/81569/1/Circular-Tecnica-63-Variedade-Abacaxi-Renato-Cabral-2003.pdf. Accessed 20 Dec 2020

  33. Maia VM, Pegoraro RF, Aspiazú I et al (2020) Diagnosis and management of nutrient constraints in pineapple. In: Srivastava AK, Hu C (eds) Fruit crops: diagnosis and management of nutrient constraints, 1st edn. Elsevier, Amsterdã, pp 739–760

    Chapter  Google Scholar 

  34. FAO (2020) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 10 Nov 2020

  35. IBGE Brazilian Institute of Geography and Statistics (2018) Municipal agricultural production (in Portuguese). https://sidra.ibge.gov.br/Tabela/1612#resultado. Accessed 23 Nov 2020

  36. Granada GG, Zambiazi RC, Mendonça CRB (2004) Pineapple: production, market and by-products (in Portuguese). Bol do Cent Pesqui Process Aliment 22:405–422. https://doi.org/10.5380/cep.v22i2.1203

    Article  Google Scholar 

  37. Paull RE, Lobo MG (2012) Pineapple. In: Tropical and subtropical fruits: postharvest physiology, processing and packaging. pp 333–357

  38. Sanches NF, Matos AP de (2013) Pineapple: the producer asks, Embrapa answers (in Portuguese). Embrapa, Brasília

  39. Novaes LC de L, Jozala AF, Lopes AM et al (2016) Stability, purification, and applications of bromelain: a review. Biotechnol Prog 32:5–13. https://doi.org/10.1002/btpr.2190

    Article  CAS  Google Scholar 

  40. Botrel N (2007) Pineapple: post harvest, 2nd ed. Embrapa, Brasília

  41. USDA - U.S. DEPARTMENT OF AGRICULTURE (2020) Food Data Central - pineapple, raw, all varieties. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169124/nutrients. Accessed 15 Dec 2020

  42. Banerjee S, Ranganathan V, Patti A, Arora A (2018) Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci Technol 82:60–70. https://doi.org/10.1016/j.tifs.2018.09.024

    Article  CAS  Google Scholar 

  43. Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90:385–391. https://doi.org/10.1016/j.fbp.2011.12.006

    Article  CAS  Google Scholar 

  44. de Reis F, O, Araujo JRG, Braun H, et al (2019) Fruit quality of a traditional pineapple cultivar (Turiaçu) compared to the most popular cultivar (Pérola) in Brazil. Aust J Crop Sci 13:546–551. https://doi.org/10.21475/ajcs.19.13.04.p1452

    Article  CAS  Google Scholar 

  45. Prado KS, Spinacé MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416. https://doi.org/10.1016/j.ijbiomac.2018.10.187

    Article  CAS  PubMed  Google Scholar 

  46. Barbosa AS, Siqueira LAM, Medeiros RLBA et al (2019) Renewable aromatics through catalytic flash pyrolysis of pineapple crown leaves using HZSM-5 synthesized with RHA and diatomite. Waste Manag 88:347–355. https://doi.org/10.1016/j.wasman.2019.03.052

    Article  CAS  PubMed  Google Scholar 

  47. Tang PL, Hassan O, Md-Jahim J, et al (2014) Fibrous agricultural biomass as a potential source for bioconversion to vanillic acid. Int J Polym Sci 2014.https://doi.org/10.1155/2014/509035

  48. Gogoi S, Chakraborty S, Saikia MD (2018) Surface modified pineapple crown leaf for adsorption of Cr(VI) and Cr(III) ions from aqueous solution. J Environ Chem Eng 6:2492–2501. https://doi.org/10.1016/j.jece.2018.03.040

    Article  CAS  Google Scholar 

  49. Astuti W, Sulistyaningsih T, Kusumastuti E et al (2019) Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour Technol 287:121426. https://doi.org/10.1016/j.biortech.2019.121426

    Article  CAS  PubMed  Google Scholar 

  50. Vicente FA, Lario LD, Pessoa A, Ventura SPM (2016) Recovery of bromelain from pineapple stem residues using aqueous micellar two-phase systems with ionic liquids as co-surfactants. Process Biochem 51:528–534. https://doi.org/10.1016/j.procbio.2016.01.004

    Article  CAS  Google Scholar 

  51. Kavuthodi B, Sebastian D (2018) Biotechnological valorization of pineapple stem for pectinase production by Bacillus subtilis BKDS1: media formulation and statistical optimization for submerged fermentation. Biocatal Agric Biotechnol 16:715–722. https://doi.org/10.1016/j.bcab.2018.05.003

    Article  Google Scholar 

  52. Nakthong N, Wongsagonsup R, Amornsakchai T (2017) Characteristics and potential utilizations of starch from pineapple stem waste. Ind Crops Prod 105:74–82. https://doi.org/10.1016/j.indcrop.2017.04.048

    Article  CAS  Google Scholar 

  53. Monte JR, Brienzo M, Milagres AMF (2011) Utilization of pineapple stem juice to enhance enzyme-hydrolytic efficiency for sugarcane bagasse after an optimized pre-treatment with alkaline peroxide. Appl Energy 88:403–408. https://doi.org/10.1016/j.apenergy.2010.08.009

    Article  CAS  Google Scholar 

  54. Hameed BH, Krishni RR, Sata SA (2009) A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J Hazard Mater 162:305–311. https://doi.org/10.1016/j.jhazmat.2008.05.036

    Article  CAS  PubMed  Google Scholar 

  55. Campos DA, Coscueta ER, Vilas-Boas AA et al (2020) Impact of functional flours from pineapple by-products on human intestinal microbiota. J Funct Foods 67:103830. https://doi.org/10.1016/j.jff.2020.103830

    Article  CAS  Google Scholar 

  56. Yusof Y, Yahya SA, Adam A (2015) Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP 26:756–760. https://doi.org/10.1016/j.procir.2014.07.160

    Article  Google Scholar 

  57. Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater Des 55:292–299. https://doi.org/10.1016/j.matdes.2013.10.005

    Article  CAS  Google Scholar 

  58. Beltrame KK, Cazetta AL, de Souza PSC et al (2018) Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf 147:64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  59. Sibaly S, Jeetah P (2017) Production of paper from pineapple leaves. J Environ Chem Eng 5:5978–5986. https://doi.org/10.1016/j.jece.2017.11.026

    Article  CAS  Google Scholar 

  60. Sodtipinta J, Ieosakulrat C, Poonyayant N et al (2017) Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for supercapacitors. Ind Crops Prod 104:13–20. https://doi.org/10.1016/j.indcrop.2017.04.015

    Article  CAS  Google Scholar 

  61. dos Santos RM, Flauzino Neto WP, Silvério HA et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714. https://doi.org/10.1016/j.indcrop.2013.08.049

    Article  CAS  Google Scholar 

  62. Barros S de S, Pessoa Júnior WAG, Sá ISC, et al (2020) Pineapple ( Ananás comosus ) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour Technol 123569.https://doi.org/10.1016/j.biortech.2020.123569

  63. Weng CH, Lin YT, Tzeng TW (2009) Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J Hazard Mater 170:417–424. https://doi.org/10.1016/j.jhazmat.2009.04.080

    Article  CAS  PubMed  Google Scholar 

  64. Liu W, Misra M, Askeland P et al (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer (Guildf) 46:2710–2721. https://doi.org/10.1016/j.polymer.2005.01.027

    Article  CAS  Google Scholar 

  65. Badjona A, Adubofuor J, Amoah I, Diako C (2019) Valorisation of carrot and pineapple pomaces for rock buns development. Sci African 6:1–12. https://doi.org/10.1016/j.sciaf.2019.e00160

    Article  Google Scholar 

  66. Hu H, Zhao Q, Xie J, Sun D (2019) Polysaccharides from pineapple pomace: new insight into ultrasonic-cellulase synergistic extraction and hypoglycemic activities. Int J Biol Macromol 121:1213–1226. https://doi.org/10.1016/j.ijbiomac.2018.10.054

    Article  CAS  PubMed  Google Scholar 

  67. Selani MM, Brazaca SGC, Dos Santos Dias CT et al (2014) Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem 163:23–30. https://doi.org/10.1016/j.foodchem.2014.04.076

    Article  CAS  PubMed  Google Scholar 

  68. Shiau SY, Wu MY, Liu YL (2015) The effect of pineapple core fiber on dough rheology and the quality of mantou. J Food Drug Anal 23:493–500. https://doi.org/10.1016/j.jfda.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  69. Roda A, Lucini L, Torchio F et al (2017) Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem 229:734–742. https://doi.org/10.1016/j.foodchem.2017.02.111

    Article  CAS  PubMed  Google Scholar 

  70. Chaurasiya RS, Hebbar HU (2013) Extraction of bromelain from pineapple core and purification by RME and precipitation methods. Sep Purif Technol 111:90–97. https://doi.org/10.1016/j.seppur.2013.03.029

    Article  CAS  Google Scholar 

  71. Lun OK, Wai TB, Ling LS (2014) Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. Int Food Res J 21:953–958

    CAS  Google Scholar 

  72. Rodsamran P, Sothornvit R (2019) Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food Bioprod Process 118:198–206. https://doi.org/10.1016/j.fbp.2019.09.010

    Article  CAS  Google Scholar 

  73. Banerjee S, Patti AF, Ranganathan V, Arora A (2019) Hemicellulose based biorefinery from pineapple peel waste: xylan extraction and its conversion into xylooligosaccharides. Food Bioprod Process 117:38–50. https://doi.org/10.1016/j.fbp.2019.06.012

    Article  CAS  Google Scholar 

  74. Guo J, Miao Z, Wan J, Guo X (2018) Pineapple peel bromelain extraction using gemini surfactant-based reverse micelle – role of spacer of gemini surfactant. Sep Purif Technol 190:156–164. https://doi.org/10.1016/j.seppur.2017.08.051

    Article  CAS  Google Scholar 

  75. Li T, Shen P, Liu W et al (2014) Major polyphenolics in pineapple peels and their antioxidant interactions. Int J Food Prop 17:1805–1817. https://doi.org/10.1080/10942912.2012.732168

    Article  CAS  Google Scholar 

  76. Dahunsi SO (2019) Liquefaction of pineapple peel: pretreatment and process optimization. Energy 185:1017–1031. https://doi.org/10.1016/j.energy.2019.07.123

    Article  CAS  Google Scholar 

  77. Rani DS, Nand K (2004) Ensilage of pineapple processing waste for methane generation. Waste Manag 24:523–528. https://doi.org/10.1016/j.wasman.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  78. Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249. https://doi.org/10.1016/j.egypro.2014.07.075

    Article  CAS  Google Scholar 

  79. Anwar B, Bundjali B, Arcana IM (2015) Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem 16:279–284. https://doi.org/10.1016/j.proche.2015.12.051

    Article  CAS  Google Scholar 

  80. Kumbhar JV, Rajwade JM, Paknikar KM (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691. https://doi.org/10.1007/s00253-015-6644-8

    Article  CAS  PubMed  Google Scholar 

  81. Oyedeji O, Bakare MK, Adewale IO et al (2017) Optimized production and characterization of thermostable invertase from Aspergillus niger IBK1, using pineapple peel as alternate substrate. Biocatal Agric Biotechnol 9:218–223. https://doi.org/10.1016/j.bcab.2017.01.001

    Article  Google Scholar 

  82. Selvakumar P, Sivashanmugam P (2017) Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Process Technol 165:1–8. https://doi.org/10.1016/j.fuproc.2017.04.020

    Article  CAS  Google Scholar 

  83. Sossou SK, Ameyapoh Y, Karou SD, De Souza C (2009) Study of pineapple peelings processing into vinegar by biotechnology. Pakistan J Biol Sci 12:859–865. https://doi.org/10.3923/pjbs.2009.859.865

    Article  CAS  Google Scholar 

  84. Jasmine Praveena R, Estherlydia D (2014) Comparative study of phytochemical screening and antioxidant capacities of vinegar made from peel and fruit of pineapple (Ananas comosus L.). Int J Pharma Bio Sci 5:B394–B403

    Google Scholar 

  85. Damasceno KA, Gonçalves CAA, dos Pereira G, S, et al (2016) Development of cereal bars containing pineapple peel flour (Ananas comosus L. Merril). J Food Qual 39:417–424. https://doi.org/10.1111/jfq.12222

    Article  CAS  Google Scholar 

  86. Aruna TE (2019) Production of value-added product from pineapple peels using solid state fermentation. Innov Food Sci Emerg Technol 57:102193. https://doi.org/10.1016/j.ifset.2019.102193

    Article  CAS  Google Scholar 

  87. Hu X, Hu K, Zeng L et al (2010) Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydr Polym 82:62–68. https://doi.org/10.1016/j.carbpol.2010.04.023

    Article  CAS  Google Scholar 

  88. Dai H, Huang H (2016) Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydr Polym 148:1–10. https://doi.org/10.1016/j.carbpol.2016.04.040

    Article  CAS  PubMed  Google Scholar 

  89. Khedkar MA, Nimbalkar PR, Gaikwad SG et al (2017) Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study. Bioresour Technol 225:359–366. https://doi.org/10.1016/j.biortech.2016.11.058

    Article  CAS  PubMed  Google Scholar 

  90. Feng C, Zhang S, Li L et al (2018) Feasibility of four wastes to remove heavy metals from contaminated soils. J Environ Manage 212:258–265. https://doi.org/10.1016/j.jenvman.2018.01.030

    Article  CAS  PubMed  Google Scholar 

  91. Sharma P, Gaur VK, Sirohi R et al (2021) Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour Technol 325:124684. https://doi.org/10.1016/j.biortech.2021.124684

    Article  CAS  PubMed  Google Scholar 

  92. Global Supply Solutions Ltd (2021) About us. https://www.globalsupply.co.ke. Accessed 12 July 2021

  93. Life Pack (2021) Biodegradable – life pack. https://lifepack.com.co/en/product-category/biodegradable/. Accessed 12 July 2021

  94. Ananas Anam (2021) About us. https://www.ananas-anam.com/about-us/. Accessed 12 July 2021

  95. Gunung Sewu Group (2021) Bromelain enzyme (BE). https://www.gunungsewu.com/our-business/bromelain-enzyme-be. Accessed 12 July 2021

  96. Circular Systems (2021) Agraloop BioFibreTM. https://circularsystems.com/agraloop. Accessed 12 July 2021

Download references

Acknowledgements

The authors are grateful to Joélington do Carmo Conceição for designing the figures presented in this review.

Funding

The authors acknowledge financial assistance from the Brazilian research funding agencies as CAPES (Coordination for the Improvement of Higher Education Personnel) under Finance Code 001, a Brazilian foundation within the Ministry of Education (MEC); CNPq (National Council for Scientific and Technological Development), a Brazilian foundation associated to the Ministry of Science and Technology (MCT); and FAPITEC/SE (Support Foundation for Research and Technological Innovation of the State of Sergipe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pereira Silva.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, I.M.M., Santos, B.L.P., Santos, C.V.M. et al. Valorization of Pineapple Waste: a Review on How the Fruit’s Potential Can Reduce Residue Generation. Bioenerg. Res. 15, 924–934 (2022). https://doi.org/10.1007/s12155-021-10318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10318-9

Keywords

Navigation