Skip to main content
Log in

A Rotated Characteristic Decomposition Technique for High-Order Reconstructions in Multi-dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

When constructing high-order schemes for solving hyperbolic conservation laws, the corresponding high-order reconstructions are commonly performed in characteristic spaces to eliminate spurious oscillations as much as possible. For multi-dimensional finite volume (FV) schemes, we need to perform the characteristic decomposition several times in different normal directions of the target cell, which is very time-consuming. In this paper, we propose a rotated characteristic decomposition technique which requires only one-time decomposition for multi-dimensional reconstructions. The rotated direction depends only on the gradient of a specific physical quantity which is cheap to calculate. This technique not only reduces the computational cost remarkably, but also controls spurious oscillations effectively. We take a third-order weighted essentially non-oscillatory finite volume (WENO-FV) scheme for solving the Euler equations as an example to demonstrate the efficiency of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994)

    Article  MathSciNet  Google Scholar 

  2. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.D.: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228(7), 2480–2516 (2009)

    Article  MathSciNet  Google Scholar 

  3. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  8. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    Article  Google Scholar 

  9. Cravero, I., Semplice, M., Visconti, G.: Optimal definition of the nonlinear weights in multidimensional central WENOZ reconstructions. SIAM J. Numer. Anal. 57(5), 2328–2358 (2019)

    Article  MathSciNet  Google Scholar 

  10. Dumbser, M.: Arbitrary high order \(P_NP_M\) schemes on unstructured meshes for the compressible Navier-Stokes equations. Comput. Fluids 39(1), 60–76 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008). https://doi.org/10.1016/j.jcp.2008.05.025

    Article  MathSciNet  MATH  Google Scholar 

  12. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dumbser, M., Zanotti, O.: Very high order \(P_NP_M\) schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228(18), 6991–7006 (2009)

    Article  MathSciNet  Google Scholar 

  14. Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987). https://doi.org/10.1016/0021-9991(87)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999)

    Article  MathSciNet  Google Scholar 

  17. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  18. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM. Math. Model. Numer. Anal. 33(3), 547–571 (1999)

    Article  MathSciNet  Google Scholar 

  19. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  Google Scholar 

  20. Levy, D., Puppo, G., Russo, G.: A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math. 33(1), 415–422 (2000)

    Article  MathSciNet  Google Scholar 

  21. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229(21), 8105–8129 (2010)

    Article  MathSciNet  Google Scholar 

  22. Liu, X.D., Osher, S., Chan, T., et al.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  23. Peng, J., Zhai, C., Ni, G., Yong, H., Shen, Y.: An adaptive characteristic-wise reconstruction weno-z scheme for gas dynamic euler equations. Comput. Fluids 179, 34–51 (2019)

    Article  MathSciNet  Google Scholar 

  24. Puppo, G.: Adaptive application of characteristic projection for central schemes. In: Hyperbolic problems: theory, numerics, applications, pp. 819–829. Springer, Berlin (2003)

    Chapter  Google Scholar 

  25. Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10(5), 1132–1160 (2011)

    Article  MathSciNet  Google Scholar 

  26. Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central weno schemes. J. Comput. Phys. 183(1), 187–209 (2002)

    Article  MathSciNet  Google Scholar 

  27. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: One-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)

    Article  MathSciNet  Google Scholar 

  28. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two-dimensional case. Comput. Fluids 34(6), 642–663 (2005)

    Article  MathSciNet  Google Scholar 

  29. Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)

  30. Ren, Y.X., Zhang, H., et al.: A characteristic-wise hybrid compact-weno scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192(2), 365–386 (2003)

    Article  MathSciNet  Google Scholar 

  31. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  32. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science and Business Media, Berlin (2013)

    Google Scholar 

  33. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunovs method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  34. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  35. Yee, H., Warming, R., Harten, A.: Implicit total variation diminishing (TVD) schemes for steady-state calculations. J. Comput. Phys. 57(3), 327–360 (1985)

    Article  MathSciNet  Google Scholar 

  36. Zhong, X., Shu, C.W.: A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397–415 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zhu, J., Shu, C.W.: Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. J. Comput. Phys. 349, 80–96 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhu, J., Zhong, X., Shu, C.W., Qiu, J.: Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter. Commun. Comput. Phys. 19(4), 944–969 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

H.S. acknowledges the financial support of National Natural Science Foundation of China (Contract No. 11901602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Contract No. 11901602).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Parsani, M. A Rotated Characteristic Decomposition Technique for High-Order Reconstructions in Multi-dimensions. J Sci Comput 88, 87 (2021). https://doi.org/10.1007/s10915-021-01602-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01602-z

Keywords

Navigation