Skip to main content
Log in

A C0 Interior Penalty Finite Element Method for Flexoelectricity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a \({\mathcal {C}}^0\) interior penalty method (C0-IPM) for the computational modelling of flexoelectricity, with application also to strain gradient elasticity, as a simplified case. Standard high-order \({\mathcal {C}}^0\) finite element approximations, with nodal basis, are considered. The proposed C0-IPM formulation involves second derivatives in the interior of the elements, plus integrals on the mesh faces (sides in 2D), that impose \({\mathcal {C}}^1\) continuity of the displacement in weak form. The formulation is stable for large enough interior penalty parameter, which can be estimated solving an eigenvalue problem. The applicability and convergence of the method is demonstrated with 2D and 3D numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study. The information to reproduce the numerical results is included in the paper.

References

  1. Abdollahi, A., Peco, C., Millán, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)

    Article  Google Scholar 

  2. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: A robust Nitsches formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228, 44–54 (2012)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C., Gu, S., Gudi, T., Sung, L.Y.: A quadratic C0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn–Hilliard type. SIAM J. Numer. Anal. 50(4), 2088–2110 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C., Sung, L.Y.: C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(1), 83–118 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q., Babuska, I.: Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng. 128(3), 405–417 (1995)

    Article  MathSciNet  Google Scholar 

  7. Codony, D., Marco, O., Fernández-Méndez, S., Arias, I.: An immersed boundary hierarchical B-spline method for flexoelectricity. Comput. Methods Appl. Mech. Eng. 354, 750–782 (2019)

    Article  MathSciNet  Google Scholar 

  8. de Prenter, F., Verhoosel, C., van Zwieten, G., van Brummelen, E.: Condition number analysis and preconditioning of the finite cell method. Comput. Methods Appl. Mech. Eng. 316, 297–327 (2017)

    Article  MathSciNet  Google Scholar 

  9. Deng, F., Deng, Q., Yu, W., Shen, S.: Mixed finite elements for flexoelectric solids. J. Appl. Mech. 84(8) (2017)

  10. Engel, G., Garikipati, K., Hughes, T., Larson, M., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  Google Scholar 

  11. Fernández-Méndez, S., Huerta, A.: Imposing essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 193(12), 1257–1275 (2004)

    Article  MathSciNet  Google Scholar 

  12. Fojo, D., Codony, D., Fernández-Méndez, S.: A C0 interior penalty method for 4th order PDEs. Rep. SCM 5, 11–21 (2020)

    MathSciNet  Google Scholar 

  13. Ghasemi, H., Park, H.S., Rabczuk, T.: A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput. Methods Appl. Mech. Eng. 313, 239–258 (2017)

    Article  MathSciNet  Google Scholar 

  14. Griebel, M., Schweitzer, M.: A particle-partition of unity method—part V: boundary conditions. Geomet. Anal. Nonlinear Part. Differ. Equ. 41, 519–542 (2002)

    MATH  Google Scholar 

  15. Liu, L.: An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 63, 451–480 (2014)

    Article  MathSciNet  Google Scholar 

  16. Majdoub, M., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77 (2008)

  17. Mao, S., Purohit, P., Aravas, N.: Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc. R. Soc. A Math. Phys. Eng. Sci. 472, 20150879 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Mao, S., Purohit, P.K.: Insights into flexoelectric solids from strain-gradient elasticity. J. Appl. Mech. 81(8) (2014)

  19. Nanthakumar, S., Zhuang, X., Park, H.S., Rabczuk, T.: Topology optimization of flexoelectric structures. J. Mech. Phys. Solids 105, 217–234 (2017)

    Article  MathSciNet  Google Scholar 

  20. Nitsche, J.: Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitöt Hamburg 36(1), 9–15 (1971)

    Article  Google Scholar 

  21. Ruiz-Gironés, E., Gargallo-Peiró, A., Sarrate, J., Roca, X.: Automatically imposing incremental boundary displacements for valid mesh morphing and curving. Comput. Aided Des. 112, 47–62 (2019)

    Article  MathSciNet  Google Scholar 

  22. Sevilla, R., Fernández-Méndez, S.: Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM. Finite Elem. Anal. Des. 47(10), 1209–1220 (2011)

    Article  MathSciNet  Google Scholar 

  23. Shu, L., Liang, R., Rao, Z., Fei, L., Ke, S., Wang, Y.: Flexoelectric materials and their related applications: a focused review. J. Adv. Ceram. 8(2), 153–173 (2019)

    Article  Google Scholar 

  24. Wells, G., Garikipati, K., Molari, L.: A discontinuous Galerkin method for strain gradient-dependent damage. Comput. Methods Appl. Mech. Eng. 193, 3633–3645 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (StG-679451 to Irene Arias), Agencia Estatal de Investigación (RTI2018-101662-B-I00), Ministerio de Economía y Competitividad (CEX2018-000797-S) and Generalitat de Catalunya (2017-SGR-1278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Fernández-Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, J., Codony, D. & Fernández-Méndez, S. A C0 Interior Penalty Finite Element Method for Flexoelectricity. J Sci Comput 88, 88 (2021). https://doi.org/10.1007/s10915-021-01613-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01613-w

Keywords

Navigation