Skip to main content
Log in

Spectrum-Free and Meshless Solvers of Parabolic PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a novel collocation method with Radial Basis Functions for the solution of the inhomogeneous parabolic equation \((\partial _{t}+\mathcal {L})u(\cdot ,t)=f\) on \(\Omega \subseteq \mathbb {R}^{d}\), with \(\mathcal {L}\) elliptic operator. As original contribution, we rewrite the solution in terms of the exponential operator \(\exp (-t\mathcal {L})\), which is then computed through the Padè-Chebyshev approximation of the 1D Gaussian function. The resulting meshless solver uniformly converges to the ground-truth solution, as the degree of the rational polynomial increases, and is independent of the evaluation of the spectrum of \(\mathcal {L}\) (i.e., spectrum-free), of the discretisation of the temporal derivative, and of user-defined parameters. Since the solution is approximated as a linear combination of Radial Basis Functions, we study the conditions on the generating kernel that guarantee the \(\mathcal {L}\)-differentiability of the meshless solution. In our tests, we compare the proposed meshless and spectrum-free solvers with the meshless spectral eigen-decomposition and the meshless \(\theta \)-method on the heat equation in a transient regime. With respect to these previous works, at small scales the Padè-Chebyshev method has a higher numerical stability and approximation accuracy, which are expressed in terms of the selected degree of the rational polynomial and of the spectral properties of the matrix that discretises the parabolic operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abrahamsen, D., Fornberg, B.: Explicit time stepping of PDEs with local refinement in space-time. J. Sci. Comput. 81, 1945–1962 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ahmad, I., Ul Islam, S., Khaliq, A.Q.: Local RBF method for multi-dimensional partial differential equations. Comput. Math. Appl. 74(2), 292–324 (2017)

    Article  MathSciNet  Google Scholar 

  3. Allaire, G., Craig, A.: Numerical Analysis and Optimization. Oxford University Press (2007)

  4. Amano, K.: A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. J. Comput. Appl. Math. 53(3), 353–370 (1994)

    Article  MathSciNet  Google Scholar 

  5. Barnett, A., Epstein, C.L., Greengard, L., Jiang, S., Wang, J.: Explicit unconditionally stable methods for the heat equation via potential theory. Pure Appl. Anal. 1(4), 709–742 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bayona, V.: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation. J. Sci. Comput. 81, 486–512 (2019)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F., Cockburn, B., Marini, L., Sulid, E.: Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Eng. 195(25), 3293–3310 (2006)

    Article  MathSciNet  Google Scholar 

  8. Cao, Y., Schultz, W.W., Beck, R.F.: Three-dimensional desingularised boundary integral method for potential problems. Int. J. Numer. Methods Fluids 12, 785–803 (1991)

    Article  Google Scholar 

  9. Carpenter, A., Ruttan, A., Varga, R.: Extended numerical computations on the “1/9” conjecture in rational approximation theory. In: Rational Approximation and Interpolation, Lecture Notes in Mathematics, vol. 1105, pp. 383–411. Springer (1984)

  10. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU interpolation. J. Sci. Comput. 74, 1–22 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chen, C., Hon, Y., Schaback, R.: Scientific Computation with Radial Basis Functions. University of Southern Missisipi (2007)

  12. Chen, C., Karageorghis, A., Smyrlis, Y.: The Method of Fundamental Solutions—A Meshless Method. Dynamic Publisher (2007)

  13. Chen, W., Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 43(3), 379–391 (2002)

    Article  MathSciNet  Google Scholar 

  14. Cody, W.J., Meinardus, G., Varga, R.S.: Chebyshev rational approximations to \(\exp (-z)\) in \((0,+\infty )\) and applications to heat-conduction problems. J. Approx. Theory 2, 50–65 (1969)

    Article  Google Scholar 

  15. Davydov, O., Oanh, D.T.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62(5), 2143–2161 (2011)

    Article  MathSciNet  Google Scholar 

  16. Duan, Y.: A note on the meshless method using radial basis functions. Comput. Math. Appl. 55(1), 66–75 (2008)

    Article  MathSciNet  Google Scholar 

  17. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Surface Fitting and Multiresolution Methods, pp. 131–138. University Press (1997)

  18. Fasshauer, G.E., Mccourt, M.J.: Stable evaluation of gaussian RBF interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

  19. Fedoseyev, A., Friedman, M., Kansa, E.: Improved multi-quadratic method for elliptic partial differential equation via PDE collocation on the boundary. Comput. Math. Appl. (3–5)(43), 439–455 (2003)

  20. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007)

    Article  MathSciNet  Google Scholar 

  21. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2006)

    Article  MathSciNet  Google Scholar 

  22. Fries, T.P., Belytschko, T.: New Shape Functions for Arbitrary Discontinuities without Additional Unknowns, pp. 87–103. Springer, Berlin (2007)

    MATH  Google Scholar 

  23. Fu, Z.J., Xi, Q., Chen, W., Cheng, A.H.D.: A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput. Math. Appl. 76(4), 760–773 (2018)

    Article  MathSciNet  Google Scholar 

  24. Golub, G., Van Loan, G.: Matrix Computations, 2nd edn. John Hopkins University Press (1989)

  25. Grady, B., Bengt, F.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gu, Y.T., Liu, G.R.: Meshless techniques for convection dominated problems. Comput. Mech. 38(2), 171–182 (2006)

    Article  MathSciNet  Google Scholar 

  27. Haq, S., Hussain, A., Uddin, M.: On the numerical solution of nonlinear Burgers’ type equations using meshless method of lines. Appl. Math. Comput. 218(11), 6280–6290 (2012)

  28. Hon, Y., Schaback, R., Zhong, M.: The meshless kernel-based method of lines for parabolic equations. Comput. Math. Appl. 68(12, Part A), 2057 – 2067 (2014)

  29. Jing, Z., Chen, J., Li, X.: RBF-ga: an adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis. Reliab. Eng. Syst. Saf. 189, 42–57 (2019)

    Article  Google Scholar 

  30. Kansa, E.: Multiquadrics i—a scattered data approximation scheme with applications to computational fluid-dynamics, surface approximations, and partial derivative estimates. Comput. Math. Appl. 19(8), 147–161 (1990)

    Article  MathSciNet  Google Scholar 

  31. Kansa, E.: Multiquadrics ii—a scattered data approximation scheme with applications to computational fluid-dynamics, surface approximations, and partial derivative estimates. Comput. Math. Appl. 19(8), 127–145 (1990)

    Article  MathSciNet  Google Scholar 

  32. Karageorghis, A., Aleksidze, M.: The method of fundamental equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4(4), 82–126 (1964)

    Article  Google Scholar 

  33. Koopmann, G., Song, L., Fahnline, J.: A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am. 86(6), 2433–2438 (1989)

    Article  Google Scholar 

  34. Milewski, S., Putanowicz, R.: Higher order meshless schemes applied to the finite element method in elliptic problems. Comput. Math. Appl. 77(3), 779–802 (2019)

    Article  MathSciNet  Google Scholar 

  35. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  36. Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the Lanczos method and an \(\cal{O}(m)\)-time spectral algorithm for balanced separator. In: Proc. of the 44th Symposium on Theory of Computing Conference, pp. 1141–1160 (2012)

  37. Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations, 1st edn. 1994, 2nd printing edn. Springer (2008)

  38. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2), 193–210 (1999)

    Article  MathSciNet  Google Scholar 

  39. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  40. Sanchez, M., Fryazinov, O., Adzhiev, V., Comninos, P., Pasko, A.: Space-time transfinite interpolation of volumetric material properties. IEEE Trans. Vis. Comput. Graph. 21(2), 278–288 (2015)

    Article  Google Scholar 

  41. Schaback, R.: A practical guide to radial basis functions. Tech. Rep., University of Goettingen (2007)

  42. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)

    Article  Google Scholar 

  43. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms [d5]. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  44. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Siggraph 21(4), 855–873 (2002)

  45. Uddin, M.: RBF-PS scheme for solving the equal width equation. Appl. Math. Comput. 222, 619–631 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Varga, R.: Scientific computation on mathematical problems and conjectures. In: SIAM, CBMS-NSF Regional Conference Series in Applied Mathematics (1990)

  47. Wendland, H.: Real piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995)

    Article  MathSciNet  Google Scholar 

  48. Yun, D., Hon, Y.: Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. Eng. Anal. Bound. Elem. 67, 63–80 (2016)

    Article  MathSciNet  Google Scholar 

  49. Zamolo, R., Nobile, E.: Two algorithms for fast 2D node generation: application to RBF meshless discretization of diffusion problems and image halftoning. Comput. Math. Appl. 75(12), 4305–4321 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the Reviewers for their thorough review and constructive comments, which helped us to improve the technical part and presentation of the revised paper. This work is partially supported by the H2020 ERC Advanced Grant CHANGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Patané.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patané, G. Spectrum-Free and Meshless Solvers of Parabolic PDEs. J Sci Comput 88, 86 (2021). https://doi.org/10.1007/s10915-021-01604-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01604-x

Keywords

Navigation