Skip to main content
Log in

230Th-234U and 231Pa-235U radiochronometry of hydrolyzed uranium hexafluoride gas

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiochronometry analyses of three hydrolyzed UF6 gas samples were performed using the 230Th-234U and 231Pa-235U chronometers. All 230Th-234U model ages are younger than, and two of the three 231Pa-235U model ages overlap with, the known UF6 gas transfer dates. The 230Th-234U discordance is caused by 8–10% 230Th loss relative to the measurement reference date, likely during alkali hydrolysis. These results confirm that UF6 gas transfers effectively purify uranium from daughter progeny. Daughter progeny fractionation can occur if solutions are not kept within optimal conditions post-UF6 gas transfer and hydrolysis, and discordance between the 230Th-234U and 231Pa-235U chronometers may result from the laboratory procedures used to prepare samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams RW, Gaffney AM (2011) 230Th-234U model ages of some uranium standard reference materials. Radiochim Acta 1:31–35

    Google Scholar 

  2. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A, Pointurier F, Schorzman KC, Steiner RE, Williams RW (2016) Round-robin 230Th-234U age dating of bulk uranium for nuclear forensics. J Radioanal Nucl Chem 307:2055–2060

    Article  CAS  Google Scholar 

  3. Rolison JM, Williams RW (2018) Application of the 226Ra-230Th-234U and 227Ac-231Pa-235U radiochronometers to UF6 cylinders. J Radioanal Nucl Chem 317:897–905

    Article  CAS  Google Scholar 

  4. Varga Z, Mayer K, Bonamici CE, Hubert A, Hutcheon I, Kinman W, Kristo M, Pointurier F, Spencer K, Stanley F, Steiner R, Tandon L, Williams RW (2015) Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations. Appl Radiat Isot 102:81–86

    Article  CAS  Google Scholar 

  5. Shimada S, Okumura I, Higashi K (1973) Experimental study on fluoride volatility process for thorium fuels. J Nucl Sci Tech 10(11):689–695

    Article  CAS  Google Scholar 

  6. Treinen KC, Gaffney AM, Rolison JM, Samperton KM, McHugh KC, Miller ML, Williams RW (2018) Improved protactinium spike calibration method applied to 231Pa-235U age-dating of certified reference materials for nuclear forensics. J Radioanal Nucl Chem 318:209–219

    Article  CAS  Google Scholar 

  7. Essex RM, Mann JL, Williams RW, Kinman WS, Hubert A, Bennett ME, Gurgiotis A (2018) A new thorium-229 reference material. Appl Radiat Isot 134:23–31

    Article  CAS  Google Scholar 

  8. Essex RM, Williams RW, Treinen KC, Colléfitzgearld R, Galea R, Keightley J, LaRosa J, Laureano-Pérez L, Nour S, Pibida L (2019) Preparation and calibration of a 231Pa reference material. J Radioanal Nucl Chem 322:1593–1604

    Article  CAS  Google Scholar 

  9. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML (1995) Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, Geneva. ISBN 92-67-10188-9, First Edition 1993, corrected and reprinted 1995. (BSI Equivalent: BSI PD 6461: 1995, Vocabulary of Metrology, Part 3. Guide to the Expression of Uncertainty in Measurement. British Standards Institution, London)

  10. Bateman, H (1910) Solution of a system of differential equations occurring in the theory of radioactive transformations. Proc Camb Philos Soc 15(V): 423–427

  11. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906

    Article  Google Scholar 

  12. Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169:17–33

    Article  CAS  Google Scholar 

  13. IAEA (2004) Handbook of nuclear data for safeguards: Database extensions, August 2008. International Nuclear Data Committee INDC (NDS)-0534

  14. Lau KH, Brittain RD, Hildenbrand DL (1989) High temperature thermodynamic studies of some gaseous thorium fluorides. J Chem Phys 90:1158–1164

    Article  CAS  Google Scholar 

  15. Andrews L, Thanthiriwatte KS, Wang X, Dixon DA (2013) Thorium fluorides ThF, ThF2, ThF3, ThF4, ThF3(F2), and ThF5- characterized by infrared spectra in solid argon and electronic structure and vibrational frequency calculations. Inorg Chem 52:8228–8233

    Article  CAS  Google Scholar 

  16. Hu S-W, Lin H, Wang X-Y, Chu T-W (2014) Effect of H2O on the hydrolysis of UF6 in the gas phase. J Mol Struct 1062:29–34

    Article  CAS  Google Scholar 

  17. Baran V, Škvor F, Voseček V (1984) Formation of the ammonium-uranyl-carbonate complexes of the type (NH4)4[UO2(CO3)3], prepared by precipitative re-extraction. Inorgananica Chim Acta 81:83–89

    Article  CAS  Google Scholar 

  18. Shimada-Fujiwara A, Hoshi A, Kameo Y, Nakashima M (2009) Influence of hydrofluoric acid on extraction of thorium using a commercially available extraction chromatographic resin. J Chromatogr A 1216:4125–4127

    Article  CAS  Google Scholar 

  19. Stoll W (2000) In: Ley C, Elvers B, and 19 others (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley‐VCH Verlag GmbH & Co

  20. Kirby HW (1959) The radiochemistry of protactinium. National Academy of Sciences National Research Council Nuclear Science Series NAS-NS 3016

  21. De Sio SM, Wilson RE (2014) Structural and spectroscopic studies of fluoroprotactinates. Inorg Chem 53:1750–1755

    Article  Google Scholar 

  22. Shinnosuke H (1959) Determination of the solubility of thorium hydroxide. Bull Instit Chem Res Kyoto Uni 37(3):200–206

    Google Scholar 

  23. Neck V, Kim JI (1999) Solubility and hydrolysis of tetravalent actinides. Forschungszentrum Karlsruhe Technik und Umwelt, Wissenschaftliche Berichte FZKA 6350

  24. Brown D, Easey JF (1970) Protactinium(V) fluorides. J Chem Soc A. https://doi.org/10.1039/j19700003378

    Article  Google Scholar 

  25. Sakanoue M, Abe M (1967) Adsorption method for the separation of protactinium isotopes. Radioisotopes 16(12):645–651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Homeland Security for postdoctoral support to LNH, MCL, Inc., for helpful discussion and information on the samples used in this study, and one anonomous reviewer for comments that improved this work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by funding from the Department of Homeland Security. Releasable to external audiences, LLNL-JRNL-818999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren N. Harrison.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, L.N., Gaffney, A.M. 230Th-234U and 231Pa-235U radiochronometry of hydrolyzed uranium hexafluoride gas. J Radioanal Nucl Chem 329, 1513–1521 (2021). https://doi.org/10.1007/s10967-021-07903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07903-9

Keywords

Navigation