Skip to main content
Log in

A facile and cost-effective adsorbent derived from industrial iron-making slag for uranium removal

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Al2O3–SiO2-BFS (AS-BFS) solid adsorbent was developed from blast furnace slag (BFS). The potentiality of the AS-BFS for uranium ion removal from an aqueous medium, via the batch method, was explored and disused in terms of dynamic and isothermal properties. The sorbent exhibited good reusability, a high capacity for uranium ions, and a good specific surface area. The results showed that the sorbent evacuated uranium at about 88.5 mg/g. The sorbent represents a promising waste-derived substitute for other sorbents for water treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shin YJ, Kim IS, Lee WK, Shin HS, Ro SG (1996) Precipitation behavior of uranium in multicomponent solution by oxalic acid. J Radioanal Nucl Chem 209:217–223. https://doi.org/10.1007/BF02063546

    Article  CAS  Google Scholar 

  2. Wehbie M, Arrachart G, Sukhbaatar T, Le Goff XF, Karamé I, Pellet-Rostaing S (2021) Extraction of uranium from sulfuric acid media using amino-diamide extractants. Hydrometallurgy 200:105550. https://doi.org/10.1016/j.hydromet.2020.105550

    Article  CAS  Google Scholar 

  3. Gai T, Li Y, Tang H, Li R, Shao L, Du Y, Ren Y (2021) Synthesis of graphene gel loading TBP via a one-step method, and its application for uranyl extraction. Sep Purif Technol 260:118224. https://doi.org/10.1016/j.seppur.2020.118224

    Article  CAS  Google Scholar 

  4. Sadeek SA, El-Sayed MA, Amine MM, Abd El- Magied MO (2020) Selective solid-phase extraction of U(VI) by amine functionalized glycidyl methacrylate. J Environ Chem Eng 2:293–303. https://doi.org/10.1016/j.jece.2013.12.015

    Article  CAS  Google Scholar 

  5. Wang Y, Zhang Y, Li Q, Li Y, Cao L, Li W (2020) Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater. Carbohydr Polym 245:116627. https://doi.org/10.1016/j.carbpol.2020.116627

    Article  CAS  PubMed  Google Scholar 

  6. Abukhadra MR, Eid MH, El-Meligy A, Sharaf M, Soliman M AT (2021) Insight into chitosan/mesoporous silica nanocomposites as eco-friendly adsorbent for enhanced retention of U (VI) and Sr (II) from aqueous solutions and real water. Int J Biol Macromol 173:435–444. https://doi.org/10.1016/j.ijbiomac.2021.01.136

    Article  CAS  PubMed  Google Scholar 

  7. Szlachta M, Neitola R, Peräniemi S, Vepsäläinen J (2020) Effective separation of uranium from mine process effluents using chitosan as a recyclable natural adsorbent. Sep Purif Technol 253:117493. https://doi.org/10.1016/j.seppur.2020.117493

    Article  CAS  Google Scholar 

  8. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438. https://doi.org/10.1016/S0016-7037(00)00376-8

    Article  CAS  Google Scholar 

  9. Xue G, Yurun F, Li M, Dezhi G, Jie J, Jincheng Y, Haibin S, Hongyu G, Yujun Z (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60. https://doi.org/10.1016/j.apsusc.2017.01.050

    Article  CAS  Google Scholar 

  10. Yu Z, Li Q, Liao J, Zhang Y, Zhang L, Zhu W (2021) Efficient removal of uranium (VI) by nano-manganese oxide materials: a synthetic experimental and mechanism studies. J Alloys Compd 868:159069. https://doi.org/10.1016/j.jallcom.2021.159069

    Article  CAS  Google Scholar 

  11. Liu W, Aldahri T, Xu C, Li C, Rohani S (2021) Synthesis of sole gismondine-type zeolite from blast furnace slag during CO2 mineralization process. J Environ Chem Eng 9:104652. https://doi.org/10.1016/j.jece.2020.104652

    Article  CAS  Google Scholar 

  12. Ren S, Aldahri T, Liu W, Liang B (2021) CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments. Energy 214:118975. https://doi.org/10.1016/j.energy.2020.118975

    Article  CAS  Google Scholar 

  13. Bian Z, Feng Y, Li H (2020) Extraction of valuable metals from Ti-bearing blast furnace slag using ammonium sulfate pressurized pyrolysis-acid leaching processes. Transactions of Nonferrous Metals Society of China 30:2836–2847. https://doi.org/10.1016/S1003-6326(20)65425-5

    Article  CAS  Google Scholar 

  14. Ersoy B, Sariisik A, Dikmen S, Sariisik G (2010) Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technol 197:129–135. https://doi.org/10.1016/j.powtec.2009.09.005

    Article  CAS  Google Scholar 

  15. Arrigo I, Catalfamo P, Cavallari L, Di Pasquale S (2007) Use of zeolitized pumice waste as a water softening agent. J Hazard Mater 147:513–517. https://doi.org/10.1016/j.jhazmat.2007.01.061

    Article  CAS  PubMed  Google Scholar 

  16. Borges ME, Hernández L, Ruiz-Morales JC, Martín-Zarza PF, Fierro JLG, Esparza P (2017) Use of 3D printing for biofuel production: efficient catalyst for sustainable biodiesel production from wastes. Clean Techn Environ Policy 19:2113–2127. https://doi.org/10.1007/s10098-017-1399-9

    Article  CAS  Google Scholar 

  17. Umegaki T, Ogawa R, Toyama N, Ohki S, Tansho M, Shimizu T, Kojima Y (2017) The influence of the pore structure of hollow silica-alumina composite spheres on their activity for hydrolytic dehydrogenation of ammonia borane. Inorg Chem Front 4:1568–1574. https://doi.org/10.1039/C7QI00338B

    Article  CAS  Google Scholar 

  18. Bai J, Ma X, Gong C, Chen Y, Yan H, Wang K, Wang J (2020) A novel amidoxime functionalized porous resins for rapidly selective uranium uptake from solution. J Mol Liq 320(B):114443. https://doi.org/10.1016/j.molliq.2020.114443

    Article  CAS  Google Scholar 

  19. Abd El-Magied MO, Manaa EA, Youssef MAM, Kouraim MN, Dhmees AS, Eldesouky EM (2021) Uranium removal from aqueous medium using Co0.5Mn0.5Fe2O4 nanoparticles. J Radioanal Nucl Chem 327:745–753. https://doi.org/10.1007/s10967-020-07571-1

    Article  CAS  Google Scholar 

  20. Abu El-Soad AM, Abd El-Magied MO, Atrees MS, Kovaleva EG, Lazzara G (2019) Synthesis and characterization of modified sulfonated chitosan for beryllium recovery. Int J Biol Macromol 139:153–160. https://doi.org/10.1016/j.ijbiomac.2019.07.162

    Article  CAS  PubMed  Google Scholar 

  21. Manobala T, Shukla SK, Rao TS, Kumar MD (2021) Kinetic modelling of the uranium biosorption by Deinococcus radiodurans. Chemosphere 269:128722. https://doi.org/10.1016/j.chemosphere.2020.128722

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal A, Kumar A, Gupta P, Tomar R, Singh NB (2021) Cu(II) ions removal from water by charcoal obtained from marigold flower waste. Mater Today Proc 34(3): 875–879. https://doi.org/10.1016/j.matpr.2020.11.046

    Article  CAS  Google Scholar 

  23. Zahakifar F, Keshtkar AR, Talebi M (2021) Synthesis of sodium alginate (SA)/ polyvinyl alcohol (PVA)/ polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Prog Nucl Energy 134:103642. https://doi.org/10.1016/j.pnucene.2021.103642

    Article  CAS  Google Scholar 

  24. El Basiony NM, Badr EE, Baker SA, El-Tabei AS (2021) Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor. Appl Surf Sci 539:148246. https://doi.org/10.1016/j.apsusc.2020.148246

    Article  CAS  Google Scholar 

  25. Ricardo-García JA, Enamorado-Horrutiner Y, Rodríguez-Fuentes G, Pomares-Alfonso MS, Villanueva-Tagle ME (2021) Characterization of zeolite as sorbent for Ni(II) concentration in aqueous solutions. Microchem J 164:106064. https://doi.org/10.1016/j.microc.2021.106064

    Article  CAS  Google Scholar 

  26. Mohmoud MA (2016) Kinetics and thermodynamics of U(VI) ions from aqueous solution using oxide nanopowder. Process Saf Environ Prot 102: 44–53. https://doi.org/10.1016/j.psep.2016.02.008

    Article  CAS  Google Scholar 

  27. Mahmoud MA (2018) Adsorption of U(VI) ions from aqueous solution using silicon dioxide nanopowder. J Saudi Chem Soc 22:229–238. https://doi.org/10.1016/j.jscs.2016.04.001

    Article  CAS  Google Scholar 

  28. Mansouri N, Saberyan K, Noaparast M (2014) Adsorption of U(VI) from aqueous solution by triocthylamine (TOA) functionalized magnetite nanoparticles as a novel adsorbent. J Adv Chem 10:2403–2414. https://doi.org/10.24297/jac.v10i3.2290

    Article  Google Scholar 

  29. Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA (2000) Characterization of U(VI) -carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochim Cosmochim Acta 64:2737–2749. https://doi.org/10.1016/S0016-7037(00)00398-7

    Article  CAS  Google Scholar 

  30. His CKD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides-application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941. https://doi.org/10.1016/0016-7037(85)90088-2

    Article  Google Scholar 

  31. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478. https://doi.org/10.1016/0016-7037(94)90243-7

    Article  CAS  Google Scholar 

  32. Dhmees AS, Rashad AM, Abdullah ES (2020) Calcined petroleum scale-CaO a cost-effective catalyst for used cooking oil methanolysis. Egypt J Chem 63(3):1033–1044. https://doi.org/10.21608/EJCHEM.2019.15107.1912

    Article  Google Scholar 

  33. Deyab MA, Corrêa RGC, Mazzetto SE, Dhmees AS, Mele G (2019) Improving the sustainability of biodiesel by controlling the corrosive effects of soybean biodiesel on aluminum alloy 5052 H32 via cardanol. Ind Crops Prod 130:146–150. https://doi.org/10.1016/j.indcrop.2018.12.053

    Article  CAS  Google Scholar 

  34. Amdeha E, Mohamed RS, Dhmees AS (2021) Sonochemical assisted preparation of ZnS–ZnO/MCM-41 based on blast furnace slag and electric arc furnace dust for Cr(VI) photoreduction. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.05.015

    Article  Google Scholar 

  35. Dhmees AS, Khaleel NM, Mahmoud SA (2018) Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal. Egypt J Pet 27:1113–1121. https://doi.org/10.1016/j.ejpe.2018.03.012

    Article  Google Scholar 

  36. Ibrahim MM, El-Sheshtawy HS, Abd El-Magied MO, Dhmees AS (2021) Mesoporous Al2O3 derived from blast furnace slag as a cost-effective adsorbent for U(VI) removal from aqueous solutions. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1900150

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Taif University Researchers Supporting Project number (TURSP-2020/05), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghaffar S. Dhmees.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.M., El-Sheshtawy, H.S., Abd El-Magied, M.O. et al. A facile and cost-effective adsorbent derived from industrial iron-making slag for uranium removal. J Radioanal Nucl Chem 329, 1291–1300 (2021). https://doi.org/10.1007/s10967-021-07914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07914-6

Keywords

Navigation