Skip to main content
Log in

Photophysical and Electrochemical Properties of Highly π-Conjugated Bipolar Carbazole-1,3,4-Oxadiazole-based D-π-A Type of Efficient Deep Blue Fluorescent Dye

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this contribution, we have designed and synthesized a novel carbazole-1,3,4-oxadiazole based bipolar fluorophore (E)-2-(4-(4-(9H-carbazol-9-yl)styryl)phenyl)-5-(4-(tertbutyl) phenyl)-1,3,4-oxadiazole (CBZ-OXA-IV). Wittig reaction is utilised for the synthesis of the designed bipolar target compound CBZ-OXA-IV. 1H NMR, 13C NMR, FT-IR and ESI–MS results confirmed the designed chemical structure of the fluorophore CBZ-OXA-IV. The photophysical properties have been investigated in detail using UV–Vis absorption, photoluminescence spectroscopy. Also, the photoluminescence studies on solid state samples (as thin films) were carried out. The CBZ-OXA-IV dye emits intense deep blue fluorescence with observed absorption and emission maxima occurring are at 353 nm and 470 nm, respectively. Fluorophore CBZ-OXA-IV has shown high Stokes shift of 7052 cm−1. The experimentally measured optical band gap (\({E}_{g}^{opt}\)) value is found to be 3.01 eV and the fluorescence quantum yields (Φf) is 0.40. The intramolecular charge transfer property of CBZ-OXA-IV dye was examined by using photophysical properties such as absorption, emission in different solvents of different varying polarities. In addition, Density Functional Theory computations are studied in detail including the MEP surface plots and natural bond orbital analysis. The electrochemical properties have been investigated in detail by using cyclic voltammetry measurements. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurement results display a high thermal stability with decomposition temperature (Td5%) 387 °C and a large glass transition temperature (Tg) of 98 °C. The obtained results demonstrated that the novel bipolar fluorophore CBZ-OXA-IV could play an important role in organic optoelectronics and possibly can be utilized as bipolar transport materials for electroluminescence applications in optoelectronic devices/OLEDs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

All data generated or analysed during this study are included in supplementary information file.

References

  1. Belavagi NS, Deshapande N, Pujar GH, Wari MN, Inamdar SR, Khazi IM (2015) Design, Synthesis and Optoelectronic Properties of Unsymmetrical Oxadiazole Based Indene Substituted Derivatives as Deep Blue Fluoroscent Materials. J Fluoresc 25:1323–1330

    Article  PubMed  CAS  Google Scholar 

  2. Zhao Y, Guo Q, Li X, Wang Q, Ma D (2017) Influence of the linkage mode and D/A ratio of carbazole/oxadiazole based host materials on phosphorescent organic light-emitting diodes. J Lumin 188:612–619

    Article  CAS  Google Scholar 

  3. Tan Y, Rui B, Li J, Zhao Z, Liu Z, Bian Z, Huang C (2019) Blue thermally activated delayed fluorescence emitters based on a constructing strategy with diversed donors and oxadiazole acceptor and their efficient electroluminescent devices. Opt Mater 94:103–112

    Article  CAS  Google Scholar 

  4. Kim JH, Park JW (2017) Designing an electron-transport layer for highly efficient, reliable, and solution-processed organic light-emitting diodes. J Mater Chem C 5:3097–3106

    Article  CAS  Google Scholar 

  5. Arunchai R, Sudyoadsuk T, Prachumrak N, Namuangruk S, Promarak V, Sukwattanasinitta M, Rashatasakhon P (2015) Synthesis and characterization of new triphenylamino-1,8-naphthalimides for organic light-emitting diode applications. New J Chem 39:2807–2814

    Article  CAS  Google Scholar 

  6. Ko KJ, Lee HB, Kim HM, Lee GJ, Shin SR, Kumar N, Song YM, Kang JW (2018) High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale 10:16184–16192

    Article  PubMed  CAS  Google Scholar 

  7. Jong FD, Daniels M, Castillo LV, Kennes K, Martín C, Miguel GD, Cano M, Morales MP, Hofkens J, Dehaen W, Auweraer MV (2019) 5,10-Dihydrobenzo[a]indolo[2,3-c]carbazoles as Novel OLED Emitters. J Phys Chem B 123:1400–1411

    Article  PubMed  CAS  Google Scholar 

  8. Li Z, Li W, Keum C, Archer E, Zhao B, Slawin AM, Huang W, Gather MC, Samuel IW, Colman EZ (2019) 1,3,4-Oxadiazole-based Deep Blue Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes. J Phys Chem C 123:24772–24785

    Article  CAS  Google Scholar 

  9. Marghad I, Bencheikh F, Wang C, Manolikakes S, b Rerat A, Gosmini C, Kim DH, Ribierre JC and Adachi C, (2019) Control of the dual emission from a thermally activated delayed fluorescence emitter containing phenothiazine units in organic light-emitting diodes. RSC Adv 9:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cias P, Slugovc C, Gescheidt G (2011) Hole Transport in Triphenylamine Based OLED Devices: From Theoretical Modeling to Properties Prediction. J Phys Chem A 115:14519–14525

    Article  PubMed  CAS  Google Scholar 

  11. Geffroy B, Roy PL, Prat C (2006) Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55:572–582

    Article  CAS  Google Scholar 

  12. Jou JH, Kumar S, Agrawal A, Lia TH, Sahooa S (2015) Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C 3:2974–3002

    Article  CAS  Google Scholar 

  13. Najare MS, Patil MK, Nadaf AA, Mantur S, Garbhagudi M, Gaonkar S, Inamdar SR, Khazi IM (2020) Photophysical, thermal properties, solvatochromism and DFT/TDDFT studies on novel conjugated D-A-p-A-D form of small molecules comprising thiophene substituted 1,3,4-oxadiazole. J Mol Struct 1199:127032

  14. Bodedla GB, Thomas KJ, Kumar S, Jou JH, Li CJ (2015) Phenothiazine-based bipolar green-emitters containing benzimidazole units: synthesis, photophysical and electroluminescence properties. RSC Adv 5:87416–87428

    Article  CAS  Google Scholar 

  15. Li Y, Xu Z, Zhu X, Chen B, Wang Z, Xiao B, Lam JW, Zhao Z, Ma D, Tang BZ (2019) Creation of Efficient Blue Aggregation-Induced Emission Luminogens for High-Performance Nondoped Blue OLEDs and Hybrid White OLEDs. ACS Appl Mater Interfaces 11:17592–17601

    Article  PubMed  CAS  Google Scholar 

  16. Pramod AG, Renuka CG, Nadaf YF, Rajaramakrishna R (2019) Impact of solvents on energy gap, photophysical, photometric properties for a new class of 4-HCM coumarin derivative: Nonlinear optical studies and optoelectronic applications. J Mol Liq 292:111383

  17. Goel A, Kumar V, Singh SP, Sharma A, Prakash S, Singh C, Anand RS (2012) Non-aggregating solvatochromic bipolar benzo[f]quinolines and benzo[a]acridines for organic electronics. J Mater Chem 22:14880–14888

    Article  CAS  Google Scholar 

  18. Priyanka B, Anusha V, Bhanuprakash K (2015) Toward Designing Efficient Multifunctional Bipolar Molecules: DFT Study of Hole and Electron Mobilities of 1,3,4-Oxadiazole Derivatives. J Phys Chem C 119:12251–12261

    Article  CAS  Google Scholar 

  19. Zhao F, Ma D (2017) Approaches to high performance white organic light-emitting diodes for general lighting. Mater Chem Front 1:1933–1950

    Article  CAS  Google Scholar 

  20. Deksnys T, Simokaitiene J, Keruckas J, Volyniuk D, Bezvikonnyi O, Cherpak V, Stakhira P, Ivaniuk K, Helzhynskyy I, Baryshnikov G, Minaevc B, Grazulevicius JV (2017) Synthesis and characterisation of a carbazole-based bipolar exciplex-forming compound for efficient and color-tunable OLEDs. New J Chem 41:559–568

    Article  CAS  Google Scholar 

  21. Hwang J, Yoon J, Kim CY, Choi S, Kang H, Kim JY, Yoon DW, Han CW, Park S, Cho MJ, Choi DH (2020) Structural isomers of 9-(pyridin-2-yl)-9H-carbazole in combination with 9’H-9,3’:6’,9”-tercarbazole and their application to high efficiency solution processed green TADF OLEDs. Dyes Pigm 179:108403

  22. Hung WY, Tu GM, Chen SW, Chi Y (2012) Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. J Mater Chem 22:5410–5418

    Article  CAS  Google Scholar 

  23. Linton KE, Fisher AL, Pearson C, Fox AM, Palsson LO, Bryce MR, Petty MC (2012) Colour tuning of blue electroluminescence using bipolar carbazole–oxadiazole molecules in single-active-layer organic light emitting devices (OLEDs). J Mater Chem 22:11816–11825

    Article  CAS  Google Scholar 

  24. Zassowski P, Ledwon P, Kurowska A, Herman AP, Lapkowski M, Cherpak V, Hotra Z, Turyk P, Ivaniuk K, Stakhira P, Sych G, Volyniuk D, Grazulevicius JV (2018) 1,3,5-Triazine and carbazole derivatives for OLED applications. Dyes Pigm 149:804–811

    Article  CAS  Google Scholar 

  25. Chen P, Zhu H, Kong L, Tian Y, Yang J (2019) Effect of solid-state packing on the photophysical properties of two novel carbazole derivatives containing tetraphenylethylene and cyano groups. J Lumin 212:212–218

    Article  CAS  Google Scholar 

  26. Kadam MM, Patil D, Sekar N (2018) Carbazole based NLOphoric styryl dyes- synthesis and study of photophysical properties by solvatochromism and viscosity sensitivity. J Lumin 202:212–224

    Article  CAS  Google Scholar 

  27. Kim CY, Lee C, Kim HJ, Hwang JH, Godumala M, Jeong J, Woo HY, Cho MJ, Park S, Choi DH (2020) Achievement of High Efficiency with Extremely Low Efficiency Roll-off in Solution-Processed Thermally Activated Delayed Fluorescence OLEDs manufactured using Xanthone-based Bipolar Host Materials. J Mater Chem C 8:6780–6787

    Article  CAS  Google Scholar 

  28. Babu DD, Naik P, Keremane KS (2020) A simple D-A-π-A configured carbazole based dye as an active photo-sensitizer: A comparative investigation on different parameters of cell. J Mol Liq 310:113189

  29. Tao Y, Gong S, Wang Q, Zhong C, Yang C, Qina J, Ma D (2010) Morphologically and electrochemically stable bipolar host for efficient green electrophosphorescence. Phys Chem Chem Phys 12:2438–2442

    Article  PubMed  CAS  Google Scholar 

  30. Huda MK, Dolui SK (2010) Luminescence property of poly(1,3-bis(phenyl-1,3,4-oxadiazole))s containing polar groups in the main chain. J Lumin 130:2242–2246

    Article  CAS  Google Scholar 

  31. Najare MS, Patil MK, Nadaf AA, Mantur S, Inamdar SR, Khazi IM (2019) Synthesis, characterization and photophysical properties of a new class of pyrene substituted 1,3,4-oxadiazole derivatives. Opt Mater 88:256–265

    Article  CAS  Google Scholar 

  32. Deshapande N, Pujar GH, Sunagar MG, Gaonkar S, Belavagi NS, Inamdar SR, Bathula C, Khazi IM (2017) Synthesis and Optoelectronic Exploration of Highly Conjugated 1,3,4-Oxadiazole Containing Donor-p-Acceptor Chromophores. ChemistrySelect 2:1793–1801

    Article  CAS  Google Scholar 

  33. Zheng Y, Batsanov AS, Jankus V, Dias FB, Bryce MR, Monkman AP (2011) Bipolar Molecules with High Triplet Energies: Synthesis, Photophysical, and Structural Properties. J Org Chem 76:8300–8310

    Article  PubMed  CAS  Google Scholar 

  34. Leong YS, Ker PJ, Jamaludin MZ, Nomanbhay SM, Ismail A, Abdullah F, Looe HM, Lo CK (2018) UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. Sensors 18:2175

    Article  PubMed Central  Google Scholar 

  35. Tagare J, Boddula R, Kumar Yadav RA, Dubey DK, Jou J-H, Patel S, Vaidyanathan S (2021) Novel Imidazole-Alkyl Spacer-Carbazole based Fluorophores for Deep-Blue Organic Light Emitting Diodes: Experimental and Theoretical Investigation. Dyes Pigm 185:108853. https://doi.org/10.1016/j.dyepig.2020.108853

    Article  CAS  Google Scholar 

  36. Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, Gao Y (2005) Heptamethine Cyanine Dyes with a Large Stokes Shift and Strong Fluorescence: A Paradigm for Excited-State Intramolecular Charge Transfer. J AM CHEM SOC 127:4170–4171

    Article  PubMed  CAS  Google Scholar 

  37. Iliashenko RY, Borodin OO, Wera M, Doroshenko AO (2015) 2,5-bis[2-(2-phenyl-1,3-oxazol-5-yl)phenyl]-1,3,4-oxadiazole – new sterically hindered high Stokes shift fluorophore sensitive to media viscosity. J Photochem Photobiol A 298:68–77

    Article  CAS  Google Scholar 

  38. Kubota Y, Matsui M, Funabiki K, Kasatani K, Takai H (2015) Strategy to enhance solid-state fluorescence and aggregation-induced emission enhancement effect in pyrimidine boron complexes. Dalton Trans 44:3326–3341

    Article  PubMed  CAS  Google Scholar 

  39. Duan C, Zhou Y, Shan G, Chen Y, Zhao W, Yuan D, Zeng L, Huang X, Niu G (2019) Bright solid-state red-emissive BODIPYs: facile synthesis and their high-contrast mechanochromic property. J Mater Chem C 7:3471–3478

    Article  CAS  Google Scholar 

  40. Najare MS, Patil MK, Garbhagudi M, Yaseen M, Inamdar SR, Khazi IM (2021) Design, synthesis and characterization of π-conjugated 2,5-diphenylsubstituted-1,3,4-oxadiazole-based D-π-A-π’-D′ form of efficient deep blue functional materials: Photophysical properties and fluorescence “Turn-off” chemsensors approach. J Mol Liq 328:115443

  41. Najare MS, Patil MK, Mantur S, Nadaf AA, Inamdar SR, Khazi IM (2018) Highly conjugated D-π-A-π-D form of novel benzo[b]thiophene substituted 1,3,4-oxadiazole derivatives; Thermal, optical properties, solvatochromism and DFT studies. J Mol Liq 272:507–519

    Article  CAS  Google Scholar 

  42. Botelho AL, Shin Y, Liu J, Lin X (2014) Structure and Optical Bandgap Relationship of p-Conjugated Systems. PLoS One 9:e86370. https://doi.org/10.1371/journal.pone.0086370

  43. Chouk R, Bergaoui M, Jaballah N, Majdoub M, Khalfaoui M (2019) Shedding light on structural, optoelectronic and charge transport properties of PPV stereoisomers for multilayer OLED application: A first principle computational studies. J Mol Liq 284:193–202

    Article  CAS  Google Scholar 

  44. Marini A, Losa AM, Biancardi A, Mennucci B (2010) What is Solvatochromism? J Phys Chem B 114:17128–17135

    Article  PubMed  CAS  Google Scholar 

  45. Kadam MM, Patil DS, Sekar N (2019) Red emitting coumarin based 4, 6-disubstituted-3-cyano-2-pyridones dyes – Synthesis, solvatochromism, linear and non-linear optical properties. J Mol Liq 276:385–398

    Article  CAS  Google Scholar 

  46. Math NN, Naik LR, Suresh HM, Inamdar SR (2006) Dual fluorescence and laser emissions from fluorescein-Na and eosin-B. Journal of Luminescence J Lumin 121:475–487

    Article  CAS  Google Scholar 

  47. Liu Y, Sun X, Wang Y, Wu Z (2014) The influence of numbers and ligation positions of the triphenylamine unit on the photophysical and electroluminescent properties of homoleptic iridium (III) complexes: a theoretical perspective. Dalton Trans 43:11915–11924

    Article  PubMed  CAS  Google Scholar 

  48. Velmurugan G, Venuvanalingam P (2015) Luminescent Re(I) terpyridine complexes for OLEDs: what does the DFT/TD-DFT probe reveal? Dalton Trans 44:8529–8542

    Article  PubMed  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman AR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ, Gaussian, Inc., Wallingford CT (2013)

  50. Zhang L, Bai Y, Liu Z, Jiang W, Lei T, Yang R, Islam A, Zhang Y, Ouyang X, Ge Z (2017) Substituted Diindenopyrazinediones with Polyalkyl-carbazole symmetrically for high-efficiency bluish green solution-processable OLED. Dyes Pigm 142:544–551

    Article  CAS  Google Scholar 

  51. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  52. Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract 2:91–104

    Article  CAS  Google Scholar 

  53. Szafran M, Komasa A, Adamska EB (2007) Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J Mol Struct 827:101–107

    Article  CAS  Google Scholar 

  54. Xavier RJ, Gobinath E (2012) Experimental and theoretical spectroscopic studies, HOMO–LUMO, NBO and NLMO analysis of 3,5-dibromo-2,6-dimethoxy pyridine. Spectrochim Acta A Mol Biomol Spectrosc 97:215–222

    Article  PubMed  CAS  Google Scholar 

  55. Leonat L, Sbarcea G, Branzoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. U P B Sci Bull Series B 75:111–118

  56. Deshapande N, Belavagi NS, Sunagar MG, Gaonkar S, Pujar GH, Wari MN, Inamdar SR, Khazi IM (2015) Synthesis, characterization and optoelectronic investigations of bithiophene substituted 1,3,4-oxadiazole derivatives as green fluorescent materials. RSC Adv 5:86685–86696

    Article  CAS  Google Scholar 

  57. Prachumrak N, Pojanasopa N, Tarsang R, Namuangruk S, Jungsuttiwong S, Keawin T, Sudyoadsuk T, Promarak V (2014) Synthesis and characterization of carbazole dendronized coumarin derivatives as solutionprocessed non-doped emitters and holetransporters for electroluminescent devices. New J Chem 38:3282–3294

    Article  CAS  Google Scholar 

  58. Torres E, Lukasik RB, Santos MN, Hofle S, Colsmannd A, Brites MJ (2016) N, N’-Diaryl-perylene-3,9-diamine derivatives: synthesis, characterization and electroluminescence properties. RSC Adv 6:107180–107188

    Article  CAS  Google Scholar 

  59. Venkatakrishnan P, Natarajan P, Moorthy JN, Lin Z, Chow TJ (2012) Twisted bimesitylene-based oxadiazoles as novel host materials for phosphorescent OLEDs. Tetrahedron 68:7502–7508

    Article  CAS  Google Scholar 

  60. Tsai MH, Hong YH, Chang CH, Su HC, Wu CC, Matoliukstyte A, Simokaitiene J, Grigalevicius S, Grazulevicius JV, Hsu CP (2007) 3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence. Adv Mater 19:862–866

    Article  CAS  Google Scholar 

  61. Fries F, Reineke S (2019) Statistical treatment of Photoluminescence Quantum Yield Measurements. Sci Rep 9:15638. https://doi.org/10.1038/s41598-019-51718-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the University Scientific Instrument Centre (USIC) and SAIF, Karnatak University, Dharwad for providing the spectral data. Also to the University Grants Commission (UGC), New Delhi, India, for providing financial support under UGC-SRF (Sr. No. 2121510180 Ref. No. 20/12/2015) and DST-Purse Phase-II program for providing necessary facilities. The authors, Tilakraj T S is thankful to UGC-JRF for funding (Sr. No. 2061651259 Dated. 26/10/2017) and Mallikarjun K. Patil would like to thank KSTePS Govt. of Karnataka for Providing DST-Ph.D fellowship.

Funding

No specific funding was received for this project. Mahesh Sadashivappa Najare is supported by a University Grants Commission (UGC), New Delhi, India, under UGC-SRF (Sr. No. 2121510180 Ref. No. 20/12/2015). All authors confirm their work is independent from the funders.

Author information

Authors and Affiliations

Authors

Contributions

Mahesh S. Najare: Conceptualization, design of study and Writing-Original draft preparation. Mallikarjun K. Patil: Acquisition of data and Writing-Original draft preparation. Tilakraj T S: Analysis, interpretation of data and Formal analysis. Mohammed Yaseen: Resources and Software. AfraQuasar A. Nadaf: Data Curation and Validation. Shivaraj Mantur: Analysis and interpretation of data. Sanjeev R. Inamdar: Visualization, Investigation, Reviewing and Editing. Imtiyaz Ahmed M. Khazi: Supervision.

Corresponding author

Correspondence to Mahesh Sadashivappa Najare.

Ethics declarations

Conflicts of Interest

Authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 656 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najare, M.S., Patil, M.K., Tilakraj, T.S. et al. Photophysical and Electrochemical Properties of Highly π-Conjugated Bipolar Carbazole-1,3,4-Oxadiazole-based D-π-A Type of Efficient Deep Blue Fluorescent Dye. J Fluoresc 31, 1645–1664 (2021). https://doi.org/10.1007/s10895-021-02778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02778-1

Keywords

Navigation