Skip to main content
Log in

Influence of an Amide-Functionalized Monomeric Unit on the Morphology and Electronic Properties of Non-Fullerene Polymer Solar Cells

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

A Correction to this article was published on 27 September 2021

This article has been updated

Abstract

A straightforward competent strategy to attune the solid-state morphology, opto-electronic and photovoltaic properties of conjugated co-polymers has been studied by inserting different percentages of N,N-dimethylthiophene-3-carboxamide (TDM) monomeric units. The TDM percentage was varied from 20 to 100%, resulting in widening of the energy band gap. Fabrication of solar cells was performed with ITIC-4F as an electron acceptor to accomplish power conversion efficiencies (PCEs) of 7.8% for P4 (minimum TDM) and 0.85% for P1 (maximum TDM) under a thermal tempering process. A drastic drop in the PCE was noted with increasing percentage of TDM which agrees well with the optical, electronic, and morphological studies. Morphological analysis revealed high crystallinity for P4:ITIC-4F blend having minimum percentage of TDM units compared to its counterparts of higher TDM percentages. A sharp increase in π-π stacking is seen with reduced percentage of TDM units, leading to d spacing of ̴ 3.6 Å. Detailed investigations regarding the charge carrier transport in relation to the π-π stacking of the polymeric film are well implemented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells. Nature Photonics, 6(3), 153–161. https://doi.org/10.1038/nphoton.2012.11

    Article  Google Scholar 

  2. Hou, J., Inganas, O., Friend, R. H., & Gao, F. (2018). Organic solar cells based on non-fullerene acceptors. Nature Materials, 17(2), 119–128. https://doi.org/10.1038/nmat5063

    Article  Google Scholar 

  3. Cheng, P., Li, G., Zhan, X., & Yang, Y. (2018). Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics, 12(3), 131–142. https://doi.org/10.1038/s41566-018-0104-9

    Article  Google Scholar 

  4. Lu, L., Zheng, T., Wu, Q., Schneider, A. M., Zhao, D., & Yu, L. (2015). Recent advances in bulk heterojunction polymer solar cells. Chemical Reviews, 115(23), 12666–12731. https://doi.org/10.1021/acs.chemrev.5b00098

    Article  Google Scholar 

  5. Chen, S., Cho, H. J., Lee, J., Yang, Y., Zhang, Z.-G., Li, Y., et al. (2017). Modulating the Molecular Packing and Nanophase Blending via a Random Terpolymerization Strategy toward 11% Efficiency Nonfullerene Polymer Solar Cells. Advanced Energy Materials. https://doi.org/10.1002/aenm.201701125

    Article  Google Scholar 

  6. Gasparini, N., Jiao, X., Heumueller, T., Baran, D., Matt, G. J., Fladischer, S., et al. (2016). Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nature Energy. https://doi.org/10.1038/nenergy.2016.118

    Article  Google Scholar 

  7. Yang, Y., Chen, W., Dou, L., Chang, W.-H., Duan, H.-S., Bob, B., et al. (2015). High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics, 9(3), 190–198. https://doi.org/10.1038/nphoton.2015.9

    Article  Google Scholar 

  8. Fan, B., Xue, X., Meng, X., Sun, X., Huo, L., Ma, W., et al. (2016). High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. Journal of Materials Chemistry A, 4(36), 13930–13937. https://doi.org/10.1039/c6ta05886h

    Article  Google Scholar 

  9. Cai, Y., Huo, L., & Sun, Y. (2017). Recent advances in wide-bandgap photovoltaic polymers. Advanced Materials. https://doi.org/10.1002/adma.201605437

    Article  Google Scholar 

  10. Zhang, S., Qin, Y., Zhu, J., & Hou, J. (2018). Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Advanced Materials, 30(20), e1800868. https://doi.org/10.1002/adma.201800868

    Article  Google Scholar 

  11. Wu, Y., An, C., Shi, L., Yang, L., Qin, Y., Liang, N., et al. (2018). The crucial role of chlorinated thiophene orientation in conjugated polymers for photovoltaic devices. Angewandte Chemie (International ed. in English), 57(39), 12911–12915. https://doi.org/10.1002/anie.201807865

    Article  Google Scholar 

  12. Li, S., Ye, L., Zhao, W., Yan, H., Yang, B., Liu, D., et al. (2018). A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. Journal of the American Chemical Society, 140(23), 7159–7167. https://doi.org/10.1021/jacs.8b02695

    Article  Google Scholar 

  13. Liu, C., Wang, K., Gong, X., & Heeger, A. J. (2016). Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 45(17), 4825–4846. https://doi.org/10.1039/c5cs00650c

    Article  Google Scholar 

  14. Blaskovits, J. T., Bura, T., Beaupré, S., Lopez, S. A., Roy, C., de Goes Soares, J., et al. (2016). A study of the degree of fluorination in regioregular Poly(3-hexylthiophene). Macromolecules, 50(1), 162–174. https://doi.org/10.1021/acs.macromol.6b02365

    Article  Google Scholar 

  15. Zhang, B., Yu, Y., Zhou, J., Wang, Z., Tang, H., Xie, S., et al. (2020). 3,4-dicyanothiophene—a versatile building block for efficient nonfullerene polymer solar cells. Advanced Energy Materials. https://doi.org/10.1002/aenm.201904247

    Article  Google Scholar 

  16. Lee, O. P., Yiu, A. T., Beaujuge, P. M., Woo, C. H., Holcombe, T. W., Millstone, J. E., et al. (2011). Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Advanced Materials, 23(45), 5359–5363. https://doi.org/10.1002/adma.201103177

    Article  Google Scholar 

  17. He, G., Li, Z., Wan, X., Zhou, J., Long, G., Zhang, S., et al. (2013). Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of π-stacking moieties as end group. Journal of Materials Chemistry A, 1(5), 1801–1809. https://doi.org/10.1039/c2ta00496h

    Article  Google Scholar 

  18. Tevis, I. D., Palmer, L. C., Herman, D. J., Murray, I. P., Stone, D. A., & Stupp, S. I. (2011). Self-assembly and orientation of hydrogen-bonded oligothiophene polymorphs at liquid-membrane-liquid interfaces. Journal of the American Chemical Society, 133(41), 16486–16494. https://doi.org/10.1021/ja204811b

    Article  Google Scholar 

  19. Lin, Y., Lim, J. A., Wei, Q., Mannsfeld, S. C. B., Briseno, A. L., & Watkins, J. J. (2012). Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability. Chemistry of Materials, 24(3), 622–632. https://doi.org/10.1021/cm203706h

    Article  Google Scholar 

  20. Yu, H., Park, K. H., Song, I., Kim, M.-J., Kim, Y.-H., & Oh, J. H. (2015). Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors. Journal of Materials Chemistry C, 3(44), 11697–11704. https://doi.org/10.1039/c5tc02565f

    Article  Google Scholar 

  21. Mei, J., Kim, D. H., Ayzner, A. L., Toney, M. F., & Bao, Z. (2011). Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. Journal of the American Chemical Society, 133(50), 20130–20133. https://doi.org/10.1021/ja209328m

    Article  Google Scholar 

  22. Kang, I., Yun, H. J., Chung, D. S., Kwon, S. K., & Kim, Y. H. (2013). Record high hole mobility in polymer semiconductors via side-chain engineering. Journal of the American Chemical Society, 135(40), 14896–14899. https://doi.org/10.1021/ja405112s

    Article  Google Scholar 

  23. Oh, J. Y., Rondeau-Gagne, S., Chiu, Y. C., Chortos, A., Lissel, F., Wang, G. N., et al. (2016). Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 539(7629), 411–415. https://doi.org/10.1038/nature20102

    Article  Google Scholar 

  24. Rondeau-Gagné, S., Néabo, J. R., Desroches, M., Cantin, K., Soldera, A., & Morin, J.-F. (2013). The importance of the amide configuration in the gelation process and topochemical polymerization of phenylacetylene macrocycles. Journal of Materials Chemistry C. https://doi.org/10.1039/c3tc00917c

    Article  Google Scholar 

  25. Guo, X., Facchetti, A., & Marks, T. J. (2014). Imide- and amide-functionalized polymer semiconductors. Chemical Reviews, 114(18), 8943–9021. https://doi.org/10.1021/cr500225d

    Article  Google Scholar 

  26. Cheng, Y.-J., Yang, S.-H., & Hsu, C.-S. (2009). Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Review, 109, 5868–5923.

    Article  Google Scholar 

  27. Lei, T., Song, W., Fanady, B., Yan, T., Wu, L., Zhang, W., et al. (2019). Facile synthesized benzo[1,2-b:4,5-b’]difuran based copolymer for both fullerene and non-fullerene organic solar cells. Polymer, 172, 391–397. https://doi.org/10.1016/j.polymer.2019.04.014

    Article  Google Scholar 

  28. Graham, K. R., Wieruszewski, P. M., Stalder, R., Hartel, M. J., Mei, J., So, F., et al. (2012). Improved Performance of Molecular Bulk-Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Advanced Functional Materials, 22(22), 4801–4813. https://doi.org/10.1002/adfm.201102456

    Article  Google Scholar 

  29. Perez, L. A., Chou, K. W., Love, J. A., van der Poll, T. S., Smilgies, D. M., Nguyen, T. Q., et al. (2013). Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Advanced Materials, 25(44), 6380–6384. https://doi.org/10.1002/adma.201302389

    Article  Google Scholar 

  30. Ma, W., Yang, C., Gong, X., Lee, K., & Heeger, A. J. (2005). Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials, 15(10), 1617–1622. https://doi.org/10.1002/adfm.200500211

    Article  Google Scholar 

  31. Aung, K. K. K., Dong, H. W., Vinay, G., Wei, L. L., Lin, K., Guillermo, C. B., & Alan, J. H. (2013). Intensity Dependence of CurrentVoltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells. ACS Nano, 7, 4569–4577.

    Article  Google Scholar 

  32. Uddin, M. A., Lee, T. H., Xu, S., Park, S. Y., Kim, T., Song, S., et al. (2015). Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers. Chemistry of Materials, 27(17), 5997–6007. https://doi.org/10.1021/acs.chemmater.5b02251

    Article  Google Scholar 

  33. Huang, F., Wu, H. B., Wang, D., Yang, W., & Cao, Y. (2004). Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chemistry of Materials, 16(4), 708–716. https://doi.org/10.1021/cm034650o

    Article  Google Scholar 

  34. Brebels, J., Manca, J. V., Lutsen, L., Vanderzande, D., & Maes, W. (2017). High dielectric constant conjugated materials for organic photovoltaics. Journal of Materials Chemistry A, 5(46), 24037–24050. https://doi.org/10.1039/c7ta06808e

    Article  Google Scholar 

  35. Xiao, T., Xu, H., Grancini, G., Mai, J., Petrozza, A., Jeng, U. S., et al. (2014). Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation. Science and Reports, 4, 5211. https://doi.org/10.1038/srep05211

    Article  Google Scholar 

  36. Heuvel, R., Colberts, F. J. M., Li, J., Wienk, M. M., & Janssen, R. A. J. (2018). The effect of side-chain substitution on the aggregation and photovoltaic performance of diketopyrrolopyrrole-alt-dicarboxylic ester bithiophene polymers. Journal of Materials Chemistry A, 6(42), 20904–20915. https://doi.org/10.1039/c8ta05238g

    Article  Google Scholar 

  37. Qin, Y., Uddin, M. A., Chen, Y., Jang, B., Zhao, K., Zheng, Z., et al. (2016). Highly Efficient Fullerene-Free Polymer Solar Cells Fabricated with Polythiophene Derivative. Advanced Materials, 28(42), 9416–9422. https://doi.org/10.1002/adma.201601803

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Energy Demand Management Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 2018201010636A) and the National Research Foundation of Korea (NRF-2019K1A3A1A39103027 and 2016M1A2A2940911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Hi Kim or Hyosung Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to an unfortunate oversight during the proofing process the acknowledgment section has not been updated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shome, S., Yifan, L., Shin, H.J. et al. Influence of an Amide-Functionalized Monomeric Unit on the Morphology and Electronic Properties of Non-Fullerene Polymer Solar Cells. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 817–826 (2022). https://doi.org/10.1007/s40684-021-00374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00374-z

Keywords

Navigation