Skip to main content
Log in

\(A_\infty \) Persistent Homology Estimates Detailed Topology from Pointcloud Datasets

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let X be a closed subspace of a metric space M. It is well known that, under mild hypotheses, one can estimate the Betti numbers of X from a finite set \(P\subset M\) of points approximating X. In this paper, we show that one can also use P to estimate much more detailed topological properties of X. We achieve this by proving the stability of \(A_\infty \)-persistent homology. In its most general case, this stability means that given a continuous function \(f:Y\rightarrow {\mathbb {R}}\) on a topological space Y, small perturbations in the function f imply at most small perturbations in the family of \(A_\infty \)-barcodes. This work can be viewed as a proof of the stability of cup-product and generalized-Massey-products persistence. The technical key of this paper consists of figuring out a setting which makes \(A_\infty \)-persistence functorial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that \(\check{{\mathcal {C}}}_\epsilon (X)\) is sometimes defined using the radius \(\epsilon /2\).

References

  1. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

    Article  Google Scholar 

  2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22(4), 481–504 (1999)

    Article  MathSciNet  Google Scholar 

  3. d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Appl. Math. 109(2), 527–554 (2010)

  4. Belchí, F.: \({A}_\infty \)-persistence. PhD thesis, Universidad de Málaga (2015)

  5. Belchí, F.: Optimising the topological information of the \(A_\infty \)-persistence groups. Discrete Comput. Geom. 62(1), 29–54 (2019)

    Article  MathSciNet  Google Scholar 

  6. Belchí, F., Murillo, A.: \(A_\infty \)-persistence. Appl. Algebra Eng. Commun. Comput. 26(1–2), 121–139 (2015)

    Article  MathSciNet  Google Scholar 

  7. Belchí, F., Pirashvili, M., Conway, J., Bennett, M., Djukanovic, R., Brodzki, J.: Lung topology characteristics in patients with chronic obstructive pulmonary disease. Sci. Rep. 8, 5341 (2018)

    Article  Google Scholar 

  8. Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)

    Article  MathSciNet  Google Scholar 

  9. Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)

    Article  MathSciNet  Google Scholar 

  10. Brendel, P., Dłotko, P., Ellis, G., Juda, M., Mrozek, M.: Computing fundamental groups from point clouds. Appl. Algebra Eng. Commun. Comput. 26(1–2), 27–48 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bubenik, P., de Silva, V., Scott, J.: Metrics for generalized persistence modules. Found. Comput. Math. 15(6), 1501–1531 (2015)

    Article  MathSciNet  Google Scholar 

  12. Buijs, U., Moreno-Fernández, J.M., Murillo, A.: \(A_\infty \) structures and Massey products. Mediterr. J. Math. 17(1), # 31 (2020)

  13. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)

    Article  MathSciNet  Google Scholar 

  14. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: 25th Annual Symposium on Computational Geometry (Aarhus 2009), pp. 237–246. ACM, New York (2009)

  15. Chazal, F., Lieutier, A.: Weak feature size and persistent homology: computing homology of solids in \(\mathbb{R}^n\) from noisy data samples. In: 21st Annual Symposium on Computational Geometry (Pisa 2005), pp. 255–262. ACM, New York (2005)

  16. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics. Springer, Cham (2016)

    Book  Google Scholar 

  17. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  18. Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(5), # 15500666 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dey, T.K., Goswami, S.: Provable surface reconstruction from noisy samples. In: 20th Annual Symposium on Computational Geometry (Brooklyn 2004), pp. 330–339. ACM, New York (2004)

  20. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  21. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets for persistence diagrams. Ann. Stat. 42(6), 2301–2339 (2014)

    Article  MathSciNet  Google Scholar 

  22. Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size distances. Bull. Belg. Math. Soc. Simon Stevin 6(3), 455–464 (1999)

    Article  MathSciNet  Google Scholar 

  23. Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 32(1), 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ginot, G., Leray, J.: Multiplicative persistent distances (2019). arXiv:1905.12307

  25. Herscovich, E.: A higher homotopic extension of persistent (co)homology. J. Homotopy Relat. Struct. 13(3), 599–633 (2018)

    Article  MathSciNet  Google Scholar 

  26. Kadeishvili, T.V.: On the homology theory of fibrations. Russ. Math. Surv. 35(3), 231–238 (1980)

    Article  Google Scholar 

  27. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. In: 18th Workshop on Algorithm Engineering and Experiments (Arlington 2016), pp. 103–112. SIAM, Philadelphia (2016)

  28. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)

    Article  MathSciNet  Google Scholar 

  29. Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren der Mathematischen Wissenschaften, vol. 346. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  30. Massey, W.S.: Higher order linking numbers. J. Knot Theory Ramifications 7(3), 393–414 (1998)

    Article  MathSciNet  Google Scholar 

  31. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)

    Article  MathSciNet  Google Scholar 

  32. Perea, J.A.: Persistent homology of toroidal sliding window embeddings. In: IEEE International Conference on Acoustics, Speech and Signal Processing (Shanghai 2016), pp. 6435–6439. IEEE (2016)

  33. Pirashvili, M., Steinberg, L., Belchi Guillamon, F., Niranjan, M., Frey, J.G., Brodzki, J.: Improved understanding of aqueous solubility modeling through topological data analysis. J. Cheminf. 10, # 54 (2018)

    Article  Google Scholar 

  34. Real, P., Molina-Abril, H.: Cell AT-models for digital volumes. Graph-Based Representations in Pattern Recognition (Venice 2009). Lecture Notes in Computer Science, vol. 5534, pp. 314–323. Springer, Berlin–Heidelberg (2009)

  35. Robins, V.: Towards computing homology from finite approximations. Topol. Proc. 24, 503–532 (2001)

    MathSciNet  MATH  Google Scholar 

  36. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: 1st Eurographics Conference on Point-Based Graphics (Zürich 2004), pp. 157–166. Eurographics Association, Goslar (2014)

  37. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7, 339–358 (2007)

    Article  MathSciNet  Google Scholar 

  38. de Silva, V., Munch, E., Stefanou, A.: Theory of interleavings on categories with a flow. Theory Appl. Categ. 33, 583–607 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Tanré, D.: Homotopie Rationnelle: Modeles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, vol. 1025. Springer, Berlin (1983)

  40. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Justin Curry for valuable feedback on previous versions of this paper. F. Belchí was partially supported by the EPSRC grant EPSRC EP/N014189/1 (Joining the dots) to the University of Southampton and by the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656). A. Stefanou was partially supported by the National Science Foundation through grants CCF-1740761 (TRIPODS TGDA@OSU) and DMS-1440386 (Mathematical Biosciences Institute at the Ohio State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Belchí.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belchí, F., Stefanou, A. \(A_\infty \) Persistent Homology Estimates Detailed Topology from Pointcloud Datasets. Discrete Comput Geom 68, 274–297 (2022). https://doi.org/10.1007/s00454-021-00319-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00319-y

Keywords

Navigation