Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circular RNAs in kidney disease and cancer

This article has been updated

Abstract

Circular RNAs (circRNAs) are a class of endogenously expressed regulatory RNAs with a single-stranded circular structure. They are generated by back splicing and their expression can be tightly regulated by RNA binding proteins. Cytoplasmic circRNAs can function as molecular sponges that inhibit microRNA–target interactions and protein function or as templates for the efficient generation of peptides via rolling circle amplification. They can also act as molecular scaffolds that enhance the reaction kinetics of enzyme–substrate interactions. In the nucleus, circRNAs might facilitate chromatin modifications and promote gene expression. CircRNAs are resistant to degradation and can be packaged in extracellular vesicles and transported in the circulation. Initial studies suggest that circRNAs have roles in kidney disease and associated cardiovascular complications. They have been implicated in hypertensive nephropathy, diabetic kidney disease, glomerular disease, acute kidney injury and kidney allograft rejection, as well as in microvascular and macrovascular complications of chronic kidney disease, including atherosclerotic vascular disease. In addition, several circRNAs have been reported to have oncogenic or tumour suppressor roles or to regulate drug resistance in kidney cancer. The available data suggest that circRNAs could be promising diagnostic and/or prognostic biomarkers and potential therapeutic targets for kidney disease, cardiovascular disease and kidney cancer.

Key points

  • CircRNAs are regulatory RNA molecules with a closed circular structure that are generated by back splicing of precursor mRNAs.

  • Functions of cytoplasmic circRNAs include sponging of microRNAs and proteins, scaffolding of enzyme–substrate interactions and acting as templates for protein translation.

  • Nuclear-enriched circRNAs can also act as molecular sponges and promote gene expression by interacting with chromatin remodelling complexes and increasing RNA polymerase II activity.

  • CircRNAs have been implicated in the pathogenesis of kidney diseases, cardiovascular complications of chronic kidney disease and kidney cancer, and are promising potential therapeutic targets.

  • CircRNAs are promising biomarkers of disease owing to their high stability and packaging in extracellular vesicles.

  • Potential circRNA-based therapeutic approaches include modulation of native circRNAs and the application of artificial circRNAs with designer molecular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CircRNA biogenesis.
Fig. 2: CircRNA degradation and exosome release.
Fig. 3: CircRNA functions.

Similar content being viewed by others

Change history

  • 31 August 2021

    The formatting of Anton Jan van Zonneveld’s name in the xml was incorrect, resulting in Jan being wrongly classed as part of his surname. This has now been corrected online.

References

  1. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495,384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nigro, J. M. et al. Scrambled exons. Cell 64, 607–613 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. Kos, A., Dijkema, R., Arnberg, A. C., van der Meide, P. H. & Schellekens, H. The hepatitis delta (delta) virus possesses a circular RNA. Nature 323, 558–560 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. Cocquerelle, C., Mascrez, B., Hetuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. Bailleul, B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res. 24, 1015–1019 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160,1125–1134 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. & Brown, P. O. Cell-type specific features of circular RNA expression. PLoS Genet. 9, e1003777 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Delaleau, M. & Borden, K. L. Multiple export mechanisms for mRNAs. Cells 4, 452–473 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang, C., Liang, D., Tatomer, D. C. & Wilusz, J. E. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32, 639–644 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Park, O. H. et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol. Cell 74, 494–507.e8 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. Lee, Y., Choe, J., Park, O. H. & Kim, Y. K. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 36, 177–188 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–80.e21 (2019).

    Article  PubMed  CAS  Google Scholar 

  21. Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e6 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Preusser, C. et al. Selective release of circRNAs in platelet-derived extracellular vesicles.J. Extracell. Vesicles 7, 1424473 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lasda, E. & Parker, R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One 11, e0148407 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Memczak, S., Papavasileiou, P., Peters, O. & Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10, e0141214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Balkom, B. W., Pisitkun, T., Verhaar, M. C. & Knepper, M. A. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 80, 1138–1145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    Article  PubMed  CAS  Google Scholar 

  29. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  Google Scholar 

  30. Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs Acts in the mammalian brain. Cell 174, 350–62.e17 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dudekula, D. B. et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13, 34–42 (2016).

    Article  PubMed  Google Scholar 

  32. Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pamudurti, N. R. et al. Translation of CircRNAs. Mol. Cell 66, 9–21.e7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, M. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9, 4475 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, M. et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37, 1805–1814 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Yang, Y. et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl Cancer Inst. 110, 304–315 (2018).

    Article  CAS  Google Scholar 

  40. Chen, X. et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 6, 34985 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xia, P. et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  42. Chen, N. et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19, 218 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  PubMed  Google Scholar 

  45. Lu, C. et al. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J. Cell Mol. Med. 24, 1700–1712 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Cheng, X. & Joe, B. Circular RNAs in rat models of cardiovascular and renal diseases. Physiol. Genomics 49, 484–490 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hu, W., Han, Q., Zhao, L. & Wang, L. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1. J. Cell Physiol. 234, 1469–1476 (2019).

    Article  PubMed  CAS  Google Scholar 

  48. Wen, S., Li, S., Li, L. & Fan, Q. circACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol. Pharm. Bull. 43, 558–564 (2020).

    Article  PubMed  CAS  Google Scholar 

  49. Guo, G. et al. Hsa_circ_0000479 as a novel diagnostic biomarker of systemic lupus erythematosus. Front. Immunol. 10, 2281 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Luan, J. et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol. Ther. Nucleic Acids 10, 245–253 (2018).

    Article  PubMed  CAS  Google Scholar 

  51. Jin, X. et al. Comprehensive expression profiles and bioinformatics analysis reveal special circular RNA expression and potential predictability in the peripheral blood of humans with idiopathic membranous nephropathy. Mol. Med. Rep. 20, 4125–4139 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Cao, Y. et al. Transcriptome sequencing of circular RNA reveals a novel circular RNA-has_circ_0114427 in the regulation of inflammation in acute kidney injury. Clin. Sci. 134, 139–154 (2020).

    Article  CAS  Google Scholar 

  53. Huang, T. et al. Circular RNA YAP1 acts as the sponge of microRNA-21-5p to secure HK-2 cells from ischaemia/reperfusion-induced injury. J. Cell Mol. Med. 24, 4707–4715 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kolling, M. et al. The circular RNA ciRs-126 predicts survival in critically Ill patients with acute kidney injury. Kidney Int. Rep. 3, 1144–1152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dou, Y. Q. et al. Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia. Theranostics 10, 1197–1212 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kolling, M. et al. Circular RNAs in urine of kidney transplant patients with acute T cell-mediated allograft rejection. Clin. Chem. 65, 1287–1294 (2019).

    Article  PubMed  CAS  Google Scholar 

  57. Altesha, M. A., Ni, T., Khan, A., Liu, K. & Zheng, X. Circular RNA in cardiovascular disease. J. Cell Physiol. 234, 5588–5600 (2019).

    Article  PubMed  CAS  Google Scholar 

  58. Aufiero, S., Reckman, Y. J., Pinto, Y. M. & Creemers, E. E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol. 16, 503–514 (2019).

    Article  PubMed  Google Scholar 

  59. Tonelli, M. et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 380, 807–814 (2012).

    Article  PubMed  Google Scholar 

  60. McCullough, P. A. Why is chronic kidney disease the “spoiler” for cardiovascular outcomes? J. Am. Coll. Cardiol. 41, 725–728 (2003).

    Article  PubMed  Google Scholar 

  61. Bernelot Moens, S. J. et al. Arterial and cellular inflammation in patients with CKD. J. Am. Soc. Nephrol. 28, 1278–1285 (2017).

    Article  PubMed  Google Scholar 

  62. Malyszko, J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin. Chim. Acta 411, 1412–1420 (2010).

    Article  PubMed  CAS  Google Scholar 

  63. Huang, H. S., Huang, X. Y., Yu, H. Z., Xue, Y. & Zhu, P. L. Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-kappaB axis in endothelial cells. Biochem. Biophys. Res. Commun. 525, 512–519 (2020).

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, F. et al. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging 10, 2266–2283 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Goodman, W. G. et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342, 1478–1483 (2000).

    Article  PubMed  CAS  Google Scholar 

  67. Cozzolino, M. et al. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 33(Suppl_3), iii28–iii34 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ryu, J. et al. Characterization of circular RNAs in vascular smooth muscle cells with vascular calcification. Mol. Ther. Nucleic Acids 19, 31–41 (2020).

    Article  PubMed  CAS  Google Scholar 

  69. Wang, Y. et al. Melatonin ameliorates aortic valve calcification via the regulation of circular RNA CircRIC3/miR-204-5p/DPP4 signaling in valvular interstitial cells. J. Pineal. Res. 69, e12666 (2020).

    Article  PubMed  CAS  Google Scholar 

  70. Koch, B. C. et al. Impairment of endogenous melatonin rhythm is related to the degree of chronic kidney disease (CREAM study). Nephrol. Dial. Transpl. 25, 513–519 (2010).

    Article  CAS  Google Scholar 

  71. Karasek, M., Szuflet, A., Chrzanowski, W., Zylinska, K. & Swietoslawski, J. Decreased melatonin nocturnal concentrations in hemodialyzed patients. Neuro Endocrinol. Lett. 26, 653–656 (2005).

    PubMed  CAS  Google Scholar 

  72. Armulik, A., Abramsson, A. & Betsholtz, C. Endothelial/pericyte interactions. Circ. Res. 97, 512–523 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. Jiang, Q. et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J. Clin. Invest. 130, 3833–3847 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Goligorsky, M. S. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Res. Clin. Pract. 34, 76–82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang, L. et al. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14, 404–418 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yousefi, F. & Soltani, B. M. Circular RNAs as potential theranostics in the cardiac fibrosis. Heart Fail Rev. 13, 407–418 (2020).

    Google Scholar 

  78. Wang, Y. & Liu, B. Circular RNA in diseased heart. Cells. 9, 1240 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  79. Amann, K., Rychlik, I., Miltenberger-Milteny, G. & Ritz, E. Left ventricular hypertrophy in renal failure. Kidney Int. Suppl. 68, S78–S85 (1998).

    Article  PubMed  CAS  Google Scholar 

  80. McMullen, J. R. & Ooi, J. Y. Y. The interplay of protein coding and non-coding RNAs (circRNAs, lncRNAs) during cardiac differentiation. EBioMedicine 25, 9–10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tan, W. L. et al. A landscape of circular RNA expression in the human heart. Cardiovasc. Res. 113, 298–309 (2017).

    PubMed  CAS  Google Scholar 

  82. Wang, K. et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 37, 2602–2611 (2016).

    Article  PubMed  CAS  Google Scholar 

  83. Lim, T. B. et al. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc. Res. 115, 1998–2007 (2019).

    Article  PubMed  CAS  Google Scholar 

  84. Zhao, X., Cai, Y. & Xu, J. Circular RNAs: biogenesis, mechanism, and function in human cancers. Int. J. Mol. Sci. 20, 3926 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  85. Yu, T. et al. CircRNAs in cancer metabolism: a review. J. Hematol. Oncol. 12, 90 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Shi, X. et al. circRNAs and exosomes: a mysterious frontier for human cancer. Mol. Ther. Nucleic Acids 19, 384–392 (2020).

    Article  PubMed  CAS  Google Scholar 

  88. Chen, T., Shao, S., Li, W., Liu, Y. & Cao, Y. The circular RNA hsa-circ-0072309 plays anti-tumour roles by sponging miR-100 through the deactivation of PI3K/AKT and mTOR pathways in the renal carcinoma cell lines. Artif. Cell Nanomed. Biotechnol. 47, 3638–3648 (2019).

    Article  CAS  Google Scholar 

  89. Zhou, B. et al. CircPCNXL2 sponges miR-153 to promote the proliferation and invasion of renal cancer cells through upregulating ZEB2. Cell Cycle 17, 2644–2654 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang, D. et al. Down-regulation of circular RNA_000926 attenuates renal cell carcinoma progression through miRNA-411-dependent CDH2 inhibition. Am. J. Pathol. 189, 2469–2486 (2019).

    Article  PubMed  CAS  Google Scholar 

  91. Chen, Z. et al. Circular RNA hsa_circ_001895 serves as a sponge of microRNA-296-5p to promote clear cell renal cell carcinoma progression by regulating SOX12. Cancer Sci. 111, 713–726 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Xue, D. et al. Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals. Mol. Cancer 18, 151 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Han, Z. et al. ERbeta-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma. Cancer Res. 78, 2550–2563 (2018).

    Article  PubMed  CAS  Google Scholar 

  94. Chen, Q. et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 469, 68–77 (2020).

    Article  PubMed  CAS  Google Scholar 

  95. Franz, A. et al. Circular RNAs in clear cell renal cell carcinoma: their microarray-based identification, analytical validation, and potential use in a clinico-genomic model to improve prognostic accuracy. Cancers 11, 1473 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  96. Lin, L. & Cai, J. Circular RNA circ-EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR-1299-mediated IRF7 activation. J. Cell Biochem. 121, 4377–4385 (2020).

    Article  PubMed  CAS  Google Scholar 

  97. Huang, Y., Zhang, Y., Jia, L., Liu, C. & Xu, F. Circular RNA ABCB10 promotes tumor progression and correlates with pejorative prognosis in clear cell renal cell carcinoma. Int. J. Biol. Markers 34, 176–183 (2019).

    Article  PubMed  CAS  Google Scholar 

  98. Wang, Q. et al. Identification of METTL14 in kidney renal clear cell carcinoma using bioinformatics analysis. Dis. Markers 2019, 5648783 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jeyaraman, S., Hanif, E. A. M., Ab Mutalib, N. S., Jamal, R. & Abu, N. Circular RNAs: potential regulators of treatment resistance in human cancers. Front. Genet. 10, 1369 (2019).

    Article  PubMed  CAS  Google Scholar 

  100. Yan, L., Liu, G., Cao, H., Zhang, H. & Shao, F. Hsa_circ_0035483 sponges hsa-miR-335 to promote the gemcitabine-resistance of human renal cancer cells by autophagy regulation. Biochem. Biophys. Res. Commun. 519, 172–178 (2019).

    Article  PubMed  CAS  Google Scholar 

  101. Li, C. M. et al. Circular RNA expression profiles in cisplatin-induced acute kidney injury in mice. Epigenomics. 11, 1191–1207 (2019).

    Article  PubMed  CAS  Google Scholar 

  102. He, N. et al. Analysis of circular RNA expression profile in HEK 293T cells exposed to ionizing radiation. Dose Response 17, 1559325819837795 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Holdt, L. M., Kohlmaier, A. & Teupser, D. Circular RNAs as therapeutic agents and targets. Front. Physiol. 9, 1262 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang, M. & Xin, Y. Circular RNAs: a new frontier for cancer diagnosis and therapy. J. Hematol. Oncol. 11, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Du, W. W. et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24, 357–370 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the article. J.M.L. researched the data and reviewed or edited the manuscript before submission. Correspondence regarding this Review should be sent to J.M.L. at johan.lorenzen@uzh.ch or j.m.lorenzen@gmail.com.

Corresponding author

Correspondence to Johan M. Lorenzen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks R.-U. Müller, who co-reviewed with M. Ignarski, X.-M. Meng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intergenic

Region between two protein-coding genes.

Intragenic

Region within a gene.

Intronic

Intron region of a protein-coding gene.

Alu elements

Short stretches of DNA that contain an abundance of transposable elements.

Rolling circle amplification

An isothermal enzymatic process in which a short DNA or RNA primer is amplified to form a long single-stranded DNA or RNA using a circular DNA template and special DNA or RNA polymerases.

Pyroptosis

A highly inflammatory form of lytic programmed cell death that occurs most frequently upon infection with intracellular pathogens and is likely to form part of the antimicrobial response.

Enriched terms

Gene ontology term enrichment is a technique for interpreting sets of genes that makes use of the gene ontology system of classification, in which genes are assigned to a set of predefined bins on the basis of their functional characteristics.

Endothelial to mesenchymal transition

(EndoMT). A process in which an endothelial cell undergoes a series of molecular events that lead to a change in phenotype towards a mesenchymal cell such as a myofibroblast or smooth muscle cell.

Aptamers

Oligonucleotide or peptide molecules that bind to a specific target molecule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Zonneveld, A.J., Kölling, M., Bijkerk, R. et al. Circular RNAs in kidney disease and cancer. Nat Rev Nephrol 17, 814–826 (2021). https://doi.org/10.1038/s41581-021-00465-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00465-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing