Skip to main content
Log in

Extended Lagrangian Born–Oppenheimer molecular dynamics: from density functional theory to charge relaxation models

  • Topical Review - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a review of extended Lagrangian Born–Oppenheimer molecular dynamics and its most recent development. The molecular dynamics framework is first derived for general Hohenberg–Kohn density functional theory and it is then presented in explicit forms for thermal Hartree–Fock theory using a density matrix formalism, for self-consistent charge density functional tight-binding theory, and for general non-linear charge relaxation models that can be designed and optimized using modern machine learning methods. Our intention is to give a self-contained but brief and hopefully pedagogical presentation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Additional data or information can be made available by the author upon reasonable requests.]

References

  1. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford Science, London, 1990)

    MATH  Google Scholar 

  2. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    ADS  Google Scholar 

  3. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, San Diego, 2002)

    MATH  Google Scholar 

  4. M. Karplus, J. McCammon, Nat. Struct. Mol. Biol. 9(9), 646 (2002)

    Google Scholar 

  5. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University Press, Cambridge, 2004). https://doi.org/10.1017/CBO9780511816581

    Book  MATH  Google Scholar 

  6. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/CBO9780511609633

    Book  Google Scholar 

  7. D. Perez, B.P. Uberuaga, Y. Shim, J.G. Amar, A.F. Voter, (Elsevier, 2009), pp. 79–98. https://doi.org/10.1016/S1574-1400(09)00504-0. http://www.sciencedirect.com/science/article/pii/S1574140009005040

  8. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, New York, 2010)

    MATH  Google Scholar 

  9. B. Kirchner, J. di Dio Philipp, J. Hutter, Top. Curr. Chem. 307, 109 (2012)

    Google Scholar 

  10. K. Kadau, T.C. Germann, P.S. Lomfahl, Int. J. Mod. Phys. C 17(12), 1755 (2006). https://doi.org/10.1142/S0129183106010182

    Article  ADS  Google Scholar 

  11. T.C. Germann, K. Kadau, Int. J. Mod. Phys. C 19(09), 1315 (2008). https://doi.org/10.1142/S0129183108012911

    Article  ADS  Google Scholar 

  12. C.L. Brooks, D.A. Case, S. Plimpton, B. Roux, D. van der Spoel, E. Tajkhorshid, J. Chem. Phys. 154(10), 100401 (2021). https://doi.org/10.1063/5.0045455

    Article  ADS  Google Scholar 

  13. A.M.N. Niklasson, C.J. Tymczak, M. Challacombe, Phys. Rev. Lett. 97, 123001 (2006)

    ADS  Google Scholar 

  14. A.M.N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)

    ADS  Google Scholar 

  15. P. Steneteg, I.A. Abrikosov, V. Weber, A.M.N. Niklasson, Phys. Rev. B 82, 075110 (2010)

    ADS  Google Scholar 

  16. G. Zheng, A.M.N. Niklasson, M. Karplus, J. Chem. Phys. 135, 044122 (2011)

    ADS  Google Scholar 

  17. M.J. Cawkwell, A.M.N. Niklasson, J. Chem. Phys. 137, 134105 (2012)

    ADS  Google Scholar 

  18. J. Hutter, WIREs Comput. Mol. Sci. 2, 604 (2012)

    Google Scholar 

  19. L. Lin, J. Lu, S. Shao, Entropy 16, 110 (2014)

    MathSciNet  ADS  Google Scholar 

  20. M. Arita, D.R. Bowler, T. Miyazaki, J. Chem. Theory Comput. 10, 5419 (2014)

    Google Scholar 

  21. P. Souvatzis, A.M.N. Niklasson, J. Chem. Phys. 140, 044117 (2014)

    ADS  Google Scholar 

  22. A.M.N. Niklasson, M. Cawkwell, J. Chem. Phys. 141, 164123 (2014)

    ADS  Google Scholar 

  23. K. Nomura, P.E. Small, R.K. Kalia, A. Nakano, P. Vashista, Comput. Phys. Commun. 192, 91 (2015)

    MathSciNet  ADS  Google Scholar 

  24. A. Albaugh, O. Demardash, T. Head-Gordon, J. Chem. Phys. 143, 174104 (2015)

    ADS  Google Scholar 

  25. C.F.A. Negre, S.M. Mnizsewski, M.J. Cawkwell, N. Bock, M.E. Wall, A.M.N. Niklasson, J. Chem. Theory Comput. 12, 3063 (2016)

    Google Scholar 

  26. A.M.N. Niklasson, J. Chem. Phys. 147, 054103 (2017)

    ADS  Google Scholar 

  27. J.A. Bjorgaard, D. Sheppard, S. Tretiak, A.M.N. Niklasson, J. Chem. Theory Comput. 14(2), 799 (2018). https://doi.org/10.1021/acs.jctc.7b00857. PMID: 29316401

    Article  Google Scholar 

  28. A.M.N. Niklasson, J. Chem. Phys. 152, 104103 (2020)

    ADS  Google Scholar 

  29. A.M.N. Niklasson, J. Chem. Theory Comput. 16, 3628 (2020)

    Google Scholar 

  30. A.M.N. Niklasson, J. Chem. Phys. 154, 0000 (2021)

    Google Scholar 

  31. C.F.A. Negre, A.M.N. Niklasson, A. Redondo, Quantum-Based Molecular Dynamics Simulations with Applications to Industrial Problems (Springer International Publishing, Cham, 2021), pp. 289–314

  32. A.M.N. Niklasson, P. Steneteg, N. Bock, J. Chem. Phys. 135, 164111 (2011)

    ADS  Google Scholar 

  33. N. Goldman, L.E. Fried, J. Phys. Chem. C 116(3), 2198 (2012). https://doi.org/10.1021/jp206768x

    Article  Google Scholar 

  34. P. Souvatzis, A.M.N. Niklasson, J. Chem. Phys. 139, 214102 (2013)

    ADS  Google Scholar 

  35. P. Souvatzis, Comput. Phys. Commun. 185(1), 415 (2014). https://doi.org/10.1016/j.cpc.2013.09.014. https://www.sciencedirect.com/science/article/pii/S0010465513003159

  36. PetaChem, LLC (2020). http://www.petachem.com/doc/userguide.pdf

  37. B. Aradi, A.M.N. Niklasson, T. Frauenheim, J. Chem. Theory Comput. 11, 3357 (2015)

    Google Scholar 

  38. V. Vitale, J. Dziezic, A. Albaugh, A. Niklasson, T.J. Head-Gordon, C.K. Skylaris, J. Chem. Phys. 12, 124115 (2017)

    ADS  Google Scholar 

  39. L. Lagardere, L.H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z.F. Jing, M. Harger, H. Torabifard, G.A. Cisneros, M.J. Schnieders, N. Gresh, Y. Maday, P.Y. Ren, J.W. Ponder, J.P. Piquemal, Chem. Sci. (2018). https://doi.org/10.1039/C7SC04531J

  40. L.D.M. Peters, J. Kussmann, C. Ochsenfeld, J. Chem. Theory Comput. 13, 5479 (2015)

    Google Scholar 

  41. T. Otsuka, M. Taiji, D.R. Bowler, T. Miyazaki, Jpn. J. Appl. Phys. 55(11), 1102B1 (2016). http://stacks.iop.org/1347-4065/55/i=11/a=1102B1

  42. T. Hirakawa, T. suzuki, D.R. Bowler, T. Myazaki, J. Phys. Condens. Matter 29, 405901 (2017)

    Google Scholar 

  43. A. Albaugh, A.M.N. Niklasson, T. Head-Gordon, J. Phys. Chem. Lett. 8, 1714 (2017)

    Google Scholar 

  44. A. Albaugh, T. Head-Gordon, J. Chem. Theory Comput. 13, 5207 (2017)

    Google Scholar 

  45. A. Albaugh, T. Head-Gordon, A.M.N. Niklasson, J. Chem. Theory Comput. 14(2), 499 (2018). https://doi.org/10.1021/acs.jctc.7b01041. PMID: 29316388

    Article  Google Scholar 

  46. P. Henning, A.M.N. Niklasson, Shadow Lagrangian dynamics for superfluidity. Kinet Relat Models 14(2), 303–321 (2021)

  47. M.P. Kroonblawd, R.K. Lindsey, N. Goldman, Chem. Sci. 10, 6091 (2019)

    Google Scholar 

  48. M.P. Kroonblawd, N. Goldman, Free Energies of Reaction for Aqueous Glycine Condensation Chemistry at Extreme Temperatures (Wiley, New York, 2020), p. 271

  49. G. Zhou, B. Nebgen, N. Lubbers, W. Malone, A.M.N. Niklasson, S. Tretiak, J. Chem. Theory Comput. 16(8), 4951 (2020). https://doi.org/10.1021/acs.jctc.0c00243. PMID: 32609513

    Article  Google Scholar 

  50. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    ADS  Google Scholar 

  51. D.K. Remler, P.A. Madden, Mol. Phys. 70, 921 (1990)

    ADS  Google Scholar 

  52. G. Pastore, E. Smargassi, F. Buda, Phys. Rev. A 44, 6334 (1991)

    ADS  Google Scholar 

  53. F.A. Bornemann, C. Schütte, Numer. Math. 78, 359 (1998)

    MathSciNet  Google Scholar 

  54. D. Marx, J. Hutter, Modern Methods and Algorithms of Quantum Chemistry (ed. J. Grotendorst, John von Neumann Institute for Computing, Jülich, Germany, 2000), 2nd edn

  55. M.E. Tuckerman, J. Phys. Condens. Matter 14, 1297 (2002)

    ADS  Google Scholar 

  56. G. Zerah, J.J. Clerouin, E.L. Pollock, Phys. Rev. Lett. 69, 446 (1992)

    ADS  Google Scholar 

  57. J.J. Clerouin, G. Zerah, E.L. Pollock, Phys. Rev. A 46, 5130 (1992)

    ADS  Google Scholar 

  58. F. Lambert, J. Clerouin, S. Mazevet, Eur. Phys. Lett. 75, 681 (2006)

    ADS  Google Scholar 

  59. M. Sprik, M.L. Klein, J. Chem. Phys. 89(12), 7556 (1988). https://doi.org/10.1063/1.455722

    Article  ADS  Google Scholar 

  60. M. Sprik, J. Chem. Phys. 95, 2283 (1990)

    Google Scholar 

  61. D. Van Belle, M. Froeyen, G. Lippens, S.J. Wodak, Mol. Phys. 77, 239 (1992)

    ADS  Google Scholar 

  62. G. Lamoureux, B.T. Roux, J. Chem. Phys. 119, 3025 (2003)

    ADS  Google Scholar 

  63. B. Hartke, E. Carter, Chem. Phys. Lett. 189, 358 (1992)

    ADS  Google Scholar 

  64. H.B. Schlegel, J.M. Millam, S.S. Iyengar, G.A. Voth, A.D. Daniels, G. Scusseria, M.J. Frisch, J. Chem. Phys. 114, 9758 (2001)

    ADS  Google Scholar 

  65. S.S. Iyengar, H.B. Schlegel, J.M. Millam, G.A. Voth, G. Scusseria, M.J. Frisch, J. Chem. Phys. 115, 10291 (2001)

    ADS  Google Scholar 

  66. J.M. Herbert, M. Head-Gordon, J. Chem. Phys. 121, 11542 (2004)

    ADS  Google Scholar 

  67. J. Li, C. Haycraft, S.S. Iyengar, J. Chem. Theory Comput. 12, 2493 (2016)

    Google Scholar 

  68. W. Heitler, F. London, Z. Phys. 44, 455 (1927)

    ADS  Google Scholar 

  69. M. Born, R. Oppenheimer, Ann. Phys. 389, 475 (1927)

    Google Scholar 

  70. P. Pulay, G. Fogarasi, Chem. Phys. Lett. 386, 272 (2004)

    ADS  Google Scholar 

  71. I.S.Y. Wang, M. Karplus, J. Am. Chem. Soc. 95, 8160 (1973)

    Google Scholar 

  72. A. Warshel, M. Karplus, Chem. Phys. Lett. 32, 11 (1975)

    ADS  Google Scholar 

  73. C. Leforestier, J. Chem. Phys. 68(10), 4406 (1978). https://doi.org/10.1063/1.435520

    Article  ADS  Google Scholar 

  74. R.N. Barnett, U. Landman, Phys. Rev. B 48, 2081 (1993)

    ADS  Google Scholar 

  75. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    ADS  Google Scholar 

  76. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    ADS  Google Scholar 

  77. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)

    ADS  Google Scholar 

  78. S. Nose, J. Chem. Phys. 81, 511 (1984)

    ADS  Google Scholar 

  79. T. Arias, M. Payne, J. Joannopoulos, Phys. Rev. Lett. 69, 1077 (1992)

    ADS  Google Scholar 

  80. J. Herbert, M. Head-Gordon, Phys. Chem. Chem. Phys. 7, 3269 (2005)

    Google Scholar 

  81. T.D. Kühne, M. Krack, F.R. Mohamed, M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)

    ADS  Google Scholar 

  82. J. Fang, X. Gao, H. Song, H. Wang, J. Chem. Phys 144, 244103 (2016)

    ADS  Google Scholar 

  83. A.M.N. Niklasson, C.J. Tymczak, M. Challacombe, J. Chem. Phys. 126, 144103 (2007)

    ADS  Google Scholar 

  84. A.M.N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C.J. Tymczak, E. Holmstrom, G. Zheng, V. Weber, J. Chem. Phys. 130, 214109 (2009)

    ADS  Google Scholar 

  85. A.M.N. Niklasson, M.J. Cawkwell, Phys. Rev. B 86, 174308 (2012)

    ADS  Google Scholar 

  86. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    ADS  Google Scholar 

  87. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  88. R. Dreizler, K. Gross, Density-Functional Theory (Springer, Berlin, 1990)

    MATH  Google Scholar 

  89. J.P. Channel, C. Scovel, Nonlinearity 3, 231 (1990)

    MathSciNet  ADS  Google Scholar 

  90. R. McLachlan, P. Atela, Nonlinearity 5, 541 (1992)

    MathSciNet  ADS  Google Scholar 

  91. B.J. Leimkuhler, R.D. Skeel, J. Comput. Phys. 112, 117 (1994)

    MathSciNet  ADS  Google Scholar 

  92. G.J. Martyna, M. Tuckerman, J. Chem. Phys. 102, 8071 (1995)

    ADS  Google Scholar 

  93. B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  94. S. Melchionna, J. Chem. Phys. 127(4), 044108 (2007). https://doi.org/10.1063/1.2753496

    Article  ADS  Google Scholar 

  95. N. Grønbech-Jensen, Mol. Phys. 118(8), e1662506 (2020). https://doi.org/10.1080/00268976.2019.1662506

    Article  ADS  Google Scholar 

  96. J. Finkelstein, C. Cheng, G. Fiorin, B. Seibold, N. Grønbech-Jensen, J. Chem. Phys. 153(13), 134101 (2020)

    ADS  Google Scholar 

  97. J. Gans, D. Shalloway, Phys. Rev. E 61, 4587 (2000). https://doi.org/10.1103/PhysRevE.61.4587

    Article  MathSciNet  ADS  Google Scholar 

  98. R.D. Engel, R.D. Skeel, M. Drees, J. Comput. Phys. 206, 432 (2005)

    MathSciNet  ADS  Google Scholar 

  99. S.D. Bond, B.J. Leimkuhler, Molecular Dynamics and the Accuracy of Numerically Computed Averages (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  100. A. Coretti, S. Bonella, G. Ciccotti, J. Chem. Phys. 149, 191102 (2018)

    ADS  Google Scholar 

  101. S. Bonella, A. Coretti, R. Vuilleumier, G. Ciccotti, Phys. Chem. Chem. Phys. 22, 10775 (2020). https://doi.org/10.1039/D0CP00163E

    Article  Google Scholar 

  102. A. Coretti, L. Scalfi, C. Bacon, B. Rotenberg, R. Vuilleumier, G. Ciccotti, M. Salanne, S. Bonella, J. Chem. Phys. 152(19), 194701 (2020). https://doi.org/10.1063/5.0007192

    Article  ADS  Google Scholar 

  103. E. Martinez, M.J. Cawkwell, A.F. Voter, A.M.N. Niklasson, J. Chem. Phys. 142, 1770 (2015)

    Google Scholar 

  104. A. Odell, A. Delin, B. Johansson, N. Bock, M. Challacombe, A.M.N. Niklasson, J. Chem. Phys. 131, 244106 (2009)

    ADS  Google Scholar 

  105. A. Odell, A. Delin, B. Johansson, M.J. Cawkwell, A.M.N. Niklasson, J. Chem. Phys. 135, 224105 (2011)

    ADS  Google Scholar 

  106. D. An, S.Y. Cheng, T. Head-Gordon, L. Lin, J. Lu. Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation. J. Comput. Phys. 438, 110338 (2021). https://doi.org/10.1016/j.jcp.2021.110338. https://www.sciencedirect.com/science/article/pii/S0021999121002333

  107. J. Kolafa, J. Comput. Chem. 25, 335 (2003)

    Google Scholar 

  108. I. Leven, T. Head-Gordon, Phys. Chem. Chem. Phys. 21(34), 18652 (2019)

    Google Scholar 

  109. A.M.N. Niklasson, M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004)

    ADS  Google Scholar 

  110. A.M.N. Niklasson, M.J. Cawkwell, E.H. Rubensson, E. Rudberg, Phys. Rev. E 92, 063301 (2015)

    MathSciNet  ADS  Google Scholar 

  111. Y. Nishimoto, J. Chem. Phys. 146, 084101 (2017)

    ADS  Google Scholar 

  112. C.G. Broyden, Math. Comput. 19, 577 (1965)

    Google Scholar 

  113. D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965)

    MathSciNet  Google Scholar 

  114. P. Pulay, Chem. Phys. Lett. 73(2), 393 (1980)

    ADS  Google Scholar 

  115. P. Pulay, J. Comput. Chem. 3(4), 556 (1982)

    Google Scholar 

  116. Y. Saad, M.H. Schultz, SIAM J. Sci. Stat. Comput. 7, 856 (1986)

    Google Scholar 

  117. D. Knoll, D. Keyes, J. Comput. Phys. 193, 357 (2004)

    MathSciNet  ADS  Google Scholar 

  118. W. Kohn, L.J. Sham, Phys. Rev. B 140, A1133 (1965)

    ADS  Google Scholar 

  119. R. McWeeny, Rev. Mod. Phys. 32, 335 (1960)

    MathSciNet  ADS  Google Scholar 

  120. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry, 1 revised edn. (Mc Graw-Hill Inc., New York, 1989)

    Google Scholar 

  121. T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory, 1st edn. (Wiley, New York, 2002)

    Google Scholar 

  122. N.D. Mermin, Ann. Phys. 21, 99 (1963)

    ADS  Google Scholar 

  123. A.M.N. Niklasson, V. Weber, J. Chem. Phys. 127, 064105 (2007)

    ADS  Google Scholar 

  124. A.M.N. Niklasson, J. Chem. Phys. 129, 244107 (2008)

    ADS  Google Scholar 

  125. P. Pulay, Mol. Phys. 17(2), 197 (1969)

    ADS  Google Scholar 

  126. H.B. Schlegel, Theor. Chem. Acc. 103, 294 (2000)

    Google Scholar 

  127. J.M. Thijssen, Computational Physics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  128. M.J.S. Dewar, W. Thiel, Theor. Chim. Acta 46, 89 (1977)

    Google Scholar 

  129. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)

    Google Scholar 

  130. M. Elstner, D. Poresag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

    ADS  Google Scholar 

  131. J.J.P. Stewart, J. Mol. Model. 19, 1 (2013)

    Google Scholar 

  132. P.O. Dral, X. Wu, W. Thiel, J. Chem. Theory Comput. 15, 1743 (2019)

    Google Scholar 

  133. C. Bannwarth, E. Caldeweyher, S. Ehlert, A.H. ans, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci. 11, 1 (2020)

    Google Scholar 

  134. W. Malone, B. Nebgen, A. White, Y. Zhang, H. Song, J.A. Bjorgaard, A.E. Sifain, B. Rodriguez-Hernandez, V.M. Freixas, S. Fernandez-Alberti, A.E. Roitberg, T.R. Nelson, S. Tretiak, J. Chem. Theory Comput. 16(9), 5771 (2020). https://doi.org/10.1021/acs.jctc.0c00248. PMID: 32635739

    Article  Google Scholar 

  135. A. Krishnapryian, P. Yang, A.M.N. Niklasson, M.J. Cawkwell, J. Chem. Theory Comput. 13, 6191 (2017)

    Google Scholar 

  136. B. Hourahine et al., J. Chem. Phys. 152, 124101 (2020)

  137. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). https://doi.org/10.1103/PhysRevLett.98.146401

    Article  ADS  Google Scholar 

  138. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010). https://doi.org/10.1103/PhysRevLett.104.136403

    Article  ADS  Google Scholar 

  139. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012). https://doi.org/10.1103/PhysRevLett.108.058301

    Article  ADS  Google Scholar 

  140. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, J. Chem. Theory Comput. 11(5), 2087 (2015). https://doi.org/10.1021/acs.jctc.5b00099. PMID: 26574412

    Article  Google Scholar 

  141. A. Thompson, L. Swiler, C. Trott, S. Foiles, G. Tucker, J. Comput. Phys. 285, 316 (2015). https://doi.org/10.1016/j.jcp.2014.12.018. http://www.sciencedirect.com/science/article/pii/S0021999114008353

  142. S.A. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Phys. Rev. B 92, 045131 (2015). https://doi.org/10.1103/PhysRevB.92.045131

    Article  ADS  Google Scholar 

  143. L. Shen, J. Wu, W. Yang, J. Chem. Theory Comput. 12(10), 4934 (2016). https://doi.org/10.1021/acs.jctc.6b00663. PMID: 27552235

    Article  Google Scholar 

  144. J. Behler, J. Chem. Phys. 145(17), 170901 (2016)

    ADS  Google Scholar 

  145. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890 (2017)

    ADS  Google Scholar 

  146. J. Han, L. Zhang, R. Car, E. Weinan, Commun. Comput. Phys. 23(3), 629 (2018)

  147. H. Li, C. Collins, M. Tanha, G.J. Gordon, D.J. Yaron, J. Chem. Theory Comput. 14(11), 5764 (2018). https://doi.org/10.1021/acs.jctc.8b00873. PMID: 30351008

    Article  Google Scholar 

  148. J.S. Smith, B.T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak, O. Isayev, A.E. Roitberg, Nat. Commun. 8, 13890 (2017)

    ADS  Google Scholar 

  149. F. Noé, A. Tkatchenko, K.R. Müller, C. Clementi, Annu. Rev. Phys. Chem. 71(1), 361 (2020). https://doi.org/10.1146/annurev-physchem-042018-052331. PMID: 32092281

    Article  Google Scholar 

  150. S. Dick, M. Fernandez-Serra, Nat. Commun. 11, 3509 (2020)

    ADS  Google Scholar 

  151. Z. Qiao, M. Welborn, A. Anandkumar, F.R. Manby, T.F. Miller, J. Chem. Phys. 153(12), 124111 (2020). https://doi.org/10.1063/5.0021955

    Article  ADS  Google Scholar 

  152. W.A. Harrison, Electronic Structure and the Properties Of Solids: The Physics of the Chemical Bond (Dover, New York, 1980)

    Google Scholar 

  153. W.M.C. Foulkes, R. Haydock, Phys. Rev. B 39, 12520 (1989)

    ADS  Google Scholar 

  154. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995). https://doi.org/10.1103/PhysRevB.51.12947

    Article  ADS  Google Scholar 

  155. M.W. Finnis, A.T. Paxton, M. Methfessel, M. van Schilfgarde, Phys. Rev. Lett. 81, 5149 (1998)

    ADS  Google Scholar 

  156. T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Poresag, S. Suhai, R. Scholz, Phys. Stat. Sol. 217, 41 (2000)

    ADS  Google Scholar 

  157. P. Koskinen, V. Mäkinen, Comput. Mater. Sci. 47(1), 237 (2009). https://doi.org/10.1016/j.commatsci.2009.07.013

    Article  Google Scholar 

  158. M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 7, 931 (2011)

    Google Scholar 

  159. C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 15, 1652 (2018)

    Google Scholar 

  160. N. Goldman, B. Aradi, R.K. Lindsey, L.E. Fried, J. Chem. Theory Comput. 14(5), 2652 (2018). https://doi.org/10.1021/acs.jctc.8b00165. PMID: 29614217

    Article  Google Scholar 

  161. R.K. Lindsey, M.P. Kroonblawd, L.E. Fried, N. Goldman, Force Matching Approaches to Extend Density Functional Theory to Large Time and Length Scales (Springer International Publishing, Cham, 2019), pp. 71–93

    Google Scholar 

  162. M.J. Cawkwell, et al., LATTE. Los Alamos National Laboratory (LA- CC-10004) (2010). http://www.github.com/lanl/latte

  163. F.J. Vesely, J. Comput. Phys. 24, 361 (1977)

    ADS  Google Scholar 

  164. W.J. Mortier, S.K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108(15), 4315 (1986). https://doi.org/10.1021/ja00275a013

    Article  Google Scholar 

  165. A.K. Rappe, W.A. Goddard III, J. Phys. Chem 95(8), 3358 (1991)

  166. S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101, 6141 (1994)

    ADS  Google Scholar 

  167. T.A. Halgren, D. Wolfgang, Curr. Opin. Struct. Biol. 11, 236 (2001)

    Google Scholar 

  168. G.A. Kaminski, H.A. Stern, B.J. Berne, R.A. Friesner, J. Phys. Chem. A 108, 621 (2004)

    Google Scholar 

  169. P.E.M. Lopes, B. Roux, A.D.J. MacKerell, Theor. Chem. Acc. 124, 11 (2009)

    Google Scholar 

  170. P. Cieplak, F.Y. Dupradeau, Y. Duan, J. Wang, J. Phys. Condens. Matter 21, 333102 (2009)

    Google Scholar 

  171. S. Naserifar, D.J. Brooks, W.A. Goddard, V. Cvicek, J. Chem. Phys. 146(12), 124117 (2017). https://doi.org/10.1063/1.4978891

    Article  ADS  Google Scholar 

  172. Z. Jing, C. Liu, S.Y. Cheng, R. Qi, B.D. Walker, J.P. Piquemal, P. Ren, Ann. Rev. Biophys. 48(1), 371 (2019). https://doi.org/10.1146/annurev-biophys-070317-033349. PMID: 30916997

    Article  Google Scholar 

  173. T.W. Ko, J.A. Finkler, S. Goedecker, J. Behler, Nat. Commun. 12, 398 (2021)

    ADS  Google Scholar 

  174. N. Bock, M. Challacombe, C.K. Gan, G. Henkelman, K. Nemeth, A.M.N. Niklasson, A. Odell, E. Schwegler, C.J. Tymczak, V. Weber, FreeON. Los Alamos National Laboratory (LA-CC 01-2; LA- CC-04-086), Copyright University of California (2008). http://www.nongnu.org/freeon/

  175. M. Challacombe et al.MondoSCF v1.0\(\alpha \)9. Los Alamos National Laboratory (LA-CC 01-2). Copyright University of California (2001). http://www.t12.lanl.gov/home/mchalla/

  176. C.K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem. Phys. 122(8), 084119 (2005). https://doi.org/10.1063/1.1839852

    Article  ADS  Google Scholar 

  177. D.R. Bowler, R. Choudhury, M.J. Gillan, T. Miyazaki, Phys. Stat. Sol. B 243(5), 898 (2006)

    Google Scholar 

  178. T.R. Nelson, A.J. White, J.A. Bjorgaard, A.E. Sifain, Y. Zhang, B. Nebgen, S. Fernandez-Alberti, D. Mozyrsky, A.E. Roitberg, S. Tretiak, Chem. Rev. 120(4), 2215 (2020). https://doi.org/10.1021/acs.chemrev.9b00447. PMID: 32040312

    Article  Google Scholar 

  179. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    ADS  Google Scholar 

  180. D.R. Bowler, T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012)

    ADS  Google Scholar 

  181. F. Mauri, G. Galli, Phys. Rev. B 50, 4316 (1994)

    ADS  Google Scholar 

  182. F. Shimojo, R.K. Kalia, A. Nakano, P. Vashista, Phys. Rev. B 77, 085103 (2008)

    ADS  Google Scholar 

  183. A.P. Horsfield, A.M. Bratkovsky, M. Fearn, D.G. Pettifor, M. Aoki, Phys. Rev. B 53, 12694 (1996). https://doi.org/10.1103/PhysRevB.53.12694

    Article  ADS  Google Scholar 

  184. E. Tsuchida, J. Phys. Condens. Matter 20, 294212 (2008)

    Google Scholar 

  185. E.H. Rubensson, A.M.N. Niklasson, SIAM J. Sci. Comput. 36, 148 (2014). arXiv:1302.7292

  186. A.M.N. Niklasson, S.M. Mnizsewski, C.F.A. Negre, M.J. Cawkwell, P.J. Swart, J. Mohd-Yusof, T.C. Germann, M.E. Wall, N. Bock, E.H. Rubensson, H. Djidjev, J. Chem. Phys. 144, 234101 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is indebted and grateful to a number of collaborators that have contributed to the development of XL-BOMD during the last decade of which most appear as co-authors of the XL-BOMD publications cited in this review. Some of those that do not appear as co-authors, but still have contributed through stimulating discussions and critical comments are Eric Chisolm, Jürg Hutter, Travis Peery, Kipton Barros, Linnea Andersson, Joshua Finkelstein, Vikram Gavini, Konstantin Leon, Mariana Rossi, Oscar Grånäs, Anders Bergman, and John Wills. This work is supported by the U.S. Department of Energy Office of Basic Energy Sciences (“Next generation quantum based molecular dynamics”, FWP LANLE8AN / KC0301061) and by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy Contract No. 892333218NCA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders M. N. Niklasson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niklasson, A.M.N. Extended Lagrangian Born–Oppenheimer molecular dynamics: from density functional theory to charge relaxation models. Eur. Phys. J. B 94, 164 (2021). https://doi.org/10.1140/epjb/s10051-021-00151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00151-6

Navigation