Skip to main content
Log in

Modeling shock-wave strength near a partially opened diaphragm in a shock tube

  • Technical Note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A model for predicting shock strength in a shock tube with a partially opened diaphragm using discharge-coefficient theory is presented. The model results are compared to an empirical correlation provided in the literature and numerical simulations. The shock-tube pressure ratio, the driver-gas type, and the Reynolds number are varied in the model and simulations. Simulations are analyzed to assess the validity of various model assumptions, including flow uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. White, D.: Influence of diaphragm opening time on shock-tube flows. J. Fluid Mech. 4(6), 585–599 (1958). https://doi.org/10.1017/S0022112058000677

    Article  MATH  Google Scholar 

  2. Gaydon, A., Hurle, I.: The Shock Tube in High-Temperature Chemical Physics. Chapman and Hall, London (1963)

    Google Scholar 

  3. Campbell, G., Kimber, G., Napier, D.: Bursting of diaphragms as related to the operation of shock tubes. J. Sci. Instrum. 42(6), 381–384 (1965). https://doi.org/10.1088/0950-7671/42/6/303

    Article  Google Scholar 

  4. Shtemenko, L.: Gas flow near a diaphragm in a shock tube (gas flow and shock wave velocity distribution in diaphragmed shock tube photographically analyzed at various opening rates). Mosc. Univ. Phys. Bull. Ser. Phys. Astron. 22(1), 58–64 (1967)

    Google Scholar 

  5. Simpson, C., Chandler, T., Bridgman, K.: Effect on shock trajectory of the opening time of diaphragms in a shock tube. Phys. Fluids 10(9), 1894–1896 (1967). https://doi.org/10.1063/1.1762384

    Article  Google Scholar 

  6. Ikui, T., Matsuo, K.: Investigations of the aerodynamic characteristics of the shock tubes (Part 1, The effects of tube diameter on the tube performance). Jpn. Soc. Mech. Eng. 12(52), 774–782 (1969). https://doi.org/10.1299/jsme1958.12.774

    Article  Google Scholar 

  7. Ikui, T., Matsuo, K., Nagai, M.: Investigations of the aerodynamic characteristics of the shock tubes (Part 2, On the formation of shock waves). Jpn. Soc. Mech. Eng. 12(52), 783–792 (1969). https://doi.org/10.1299/jsme1958.12.783

    Article  Google Scholar 

  8. Rothkopf, E., Low, W.: Diaphragm opening process in shock tubes. Phys. Fluids 17(6), 1958–1988 (1974). https://doi.org/10.1063/1.1694860

    Article  Google Scholar 

  9. Petrie-Repar, P., Jacobs, P.: A computational study of shock speeds in high-performance shock tubes. Shock Waves 8, 79–91 (1998). https://doi.org/10.1007/s001930050101

    Article  MATH  Google Scholar 

  10. Persico, G., Gaetani, P., Guardone, A.: Dynamic calibration of fast-response probes in low-pressure shock tubes. Meas. Sci. Technol. 16(9), 1751–1759 (2005). https://doi.org/10.1088/0957-0233/16/9/006

    Article  Google Scholar 

  11. Gaetani, P., Guardone, A., Persico, G.: Shock tube flows past partially opened diaphragms. J. Fluid Mech. 602, 267–286 (2008). https://doi.org/10.1017/S0022112008000815

    Article  MATH  Google Scholar 

  12. Fukushima, G., Tamba, T., Iwakawa, A., Sasoh, A.: Influence of cellophane diaphragm rupture processes on the shock wave formation in a shock tube. Shock Waves 30, 545–557 (2020). https://doi.org/10.1007/s00193-020-00951-2

    Article  Google Scholar 

  13. Henshall, B.: On some aspects of the use of shock tubes in aerodynamic research. Reports and Memoranda 3044, University of Bristol (1955)

  14. Lee, H., Kim, Y., Kim, S., Jeung, I.: Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes. Proc. Combust. Inst. 33(2), 2351–2358 (2011). https://doi.org/10.1016/j.proci.2010.06.040

    Article  Google Scholar 

  15. Pakdaman, S., Garcia, M., Teh, E., Lincoln, D., Trivedi, M., Alves, M., Johansen, C.: Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel. Shock Waves 26, 799–813 (2016). https://doi.org/10.1007/s00193-016-0628-1

    Article  Google Scholar 

  16. Liepmann, H., Puckett, A.: Introduction to Aerodynamics of a Compressible Fluid. Wiley, New York (1947)

    MATH  Google Scholar 

  17. John, J., Keith, T.: Gas Dynamics. Pearson Prentice Hall, Hoboken (2006)

    Google Scholar 

  18. Rathakrishnan, E.: Applied Gas Dynamics. Wiley, Singapore (2010)

    Google Scholar 

  19. Jobson, D.: On the flow of a compressible fluid through orifices. Proc. Inst. Mech. Eng. 169(1), 767–776 (1955). https://doi.org/10.1243/PIME_PROC_1955_169_077_02

    Article  MathSciNet  Google Scholar 

  20. Morris, S.: Discharge coefficients for choked gas-liquid flow through nozzles and orifices and applications to safety devices. J. Loss Prev. Process Ind. 3(3), 303–310 (1990). https://doi.org/10.1016/0950-4230(90)80024-5

    Article  Google Scholar 

  21. Management, E.P.: Flowel 4 development and marketing. User Manual Emerson Project 3007536, Emerson Process Management (2005)

  22. Baker, R.: An Introductory Guide to Flow Measurement. ASME Press, New York (2003)

    Google Scholar 

  23. Reader-Harris, M.: Orifice Plates and Venturi Tubes. Springer, Glasgow (2015)

    Book  Google Scholar 

  24. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000). https://doi.org/10.1006/jcph.2000.6459

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001). https://doi.org/10.1137/S1064827500373413

    Article  MathSciNet  MATH  Google Scholar 

  26. Arisman, C.: Nitric oxide chemistry and velocity slip effects in hypersonic boundary layers. Master’s thesis, University of Calgary, Canada (2014)

  27. Wilson, S.: Assessment and analysis of a novel intake for a ramjet engine. Master’s thesis, University of Calgary, Canada (2017)

  28. Arisman, C., Johansen, C.: Nitric oxide chemistry effects in hypersonic boundary layers. AIAA J. 53(12), 3652–3660 (2015). https://doi.org/10.2514/1.J053979

    Article  Google Scholar 

  29. Marcantoni, L., Tamagno, J., Elaskar, S.: High speed flow simulation using OpenFOAM. Mecanica Computacional 31, 2939–2959 (2012)

    Google Scholar 

  30. Greenshields, C., Weller, H., Gasparini, L., Reese, J.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63(1), 1–21 (2010). https://doi.org/10.1002/fld.2069

    Article  MathSciNet  MATH  Google Scholar 

  31. Arisman, C., Johansen, C., Bathel, B., Danehy, P.: Investigation of gas seeding for planar laser-induced fluorescence in hypersonic boundary layers. AIAA J. 53(12), 3637–3651 (2015). https://doi.org/10.2514/1.J053892

    Article  Google Scholar 

  32. Hinman, W., Johansen, C.: Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder. Shock Waves 26, 717–727 (2016). https://doi.org/10.1007/s00193-015-0615-y

    Article  Google Scholar 

  33. Talukdar, M.: Numerical simulation of underexpanded air jet using openfoam. Master’s thesis, University of Stavanger, Norway (2015)

  34. Teh, E., Johansen, C.: Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction. Acta Astronaut. 128, 431–439 (2016). https://doi.org/10.1016/j.actaastro.2016.08.004

    Article  Google Scholar 

  35. Khodadadi-Azadboni, R., Wen, J., Heidari, A.: A computational fluid dynamic investigation of inhomogeneous hydrogen flame acceleration and transition to detonation. Proceedings of the Tenth Mediterranean Combustion Symposium (2017)

  36. Pakdaman, S.: Shock wave acceleration in a high-aspect-ratio shock tube. Master’s thesis, University of Calgary, Canada (2014)

  37. Roache, P.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160 (1997). https://doi.org/10.1146/annurev.fluid.29.1.123

    Article  MathSciNet  Google Scholar 

  38. Hinman, W.: Laminar near wake of hypersonic blunt bodies. PhD thesis, University of Calgary, Canada (2017)

  39. Henkes, R., Hoogendoorn, C.: On the stability of the natural convection flow in a square cavity heated from the side. Appl. Sci. Res. 47, 195–220 (1990). https://doi.org/10.1007/BF00418051

    Article  MATH  Google Scholar 

  40. Danny-Harvey, L.: Energy and the New Reality 1: Energy Efficiency and the Demand for Energy Services. Earthscan, London (2010)

    Book  Google Scholar 

  41. Burcat, A.: Third millennium ideal gas and condensed phase thermochemical database for combustion. Tae report, Technion-Israel Institute of Technology (2001)

  42. Poling, B., Prausnitz, J., O’Connell, J.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)

  43. Wang, L., Drahushuk, L., Cantley, L., Koenig, S., Liu, X., Pellegrino, J., Strano, M., Scott-Bunch, J.: Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat. Nanotechnol. 10, 785–790 (2015). https://doi.org/10.1038/nnano.2015.158

    Article  Google Scholar 

  44. Benallou, A.: Energy and Mass Transfers: Balance Sheet Approach and Basic Concepts. Wiley, New York (2018)

    Book  Google Scholar 

  45. He, W., Lv, W., Dickerson, J.: Gas Transport in Solid Oxide Fuel Cells. Springer, Berlin (2014)

    Book  Google Scholar 

  46. Menter, F.: Improved two-equation k-omega turbulence models for aerodynamic flows. Technical Memorandum 103975, NASA Ames Research Center (1992)

  47. Alves, M.: Investigation and modeling of shock wave propagation in a shock tube with a partially opened diaphragm. PhD thesis, University of Calgary (2019)

  48. Bansal, R.: A Textbook of Fluid Mechanics and Hydraulic Machines. Laxmi Publications (P) Ltd., New Delhi (2005)

  49. Massoud, M.: Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer. Springer, Berlin (2005)

    Google Scholar 

  50. Lienhard, J., Lienhard, J.: Velocity coefficients for free jets from sharp-edged orifices. J. Fluids Eng. 106(1), 13–17 (1984). https://doi.org/10.1115/1.3242391

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Numerical simulations were run using computational resources managed by Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Alves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Sasoh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, M.M., Johansen, C.T. Modeling shock-wave strength near a partially opened diaphragm in a shock tube. Shock Waves 31, 499–508 (2021). https://doi.org/10.1007/s00193-021-01028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01028-4

Keywords

Navigation