Skip to main content
Log in

Decoherence of Magneto-Bipolaron with Strong Coupling in a Quantum Dot Qubit Under Applied Electric Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the physical properties and decoherence of strong coupling magneto-bipolaron qubit in a quantum dot under the effect of an external electric field. The magneto-bipolaron energies of ground and first excited states are evaluated using the Pekar variational method. The decoherence time and entropy are also evaluated. All these calculations are intended to show firstly the effect of both the magnetic and the electric fields on the quasi-particles’ properties in the quantum dot. Our results show that all studied quasi-particles properties in the quantum dot are closely influenced by magnetic and electric fields. The decoherence time increases with increasing of the electric field strength, and decreases with increasing of the magnetic field strength and the electron–phonon coupling constant. From our analysis, it is obvious to see that the application of electric field and magnetic field have opposite effects on the qubit. Comparing both fields, the electric field is advantageous for qubit survival and information storage, while the magnetic field is detrimental to qubit survival and information storage, respectively. The entropy increases with increasing of the electric field strength, and decreases with increasing of the magnetic field strength. We also observe that in the absence of magnetic and electric fields, the entropy varies very slightly with the increase of the confinement strength. We can deduce that, these external fields can help us to modulate the period of information transfer in the system, and hence can be used to control its coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 80, 4991–4994 (1998)

    Article  ADS  Google Scholar 

  2. S. Raymond et al., Solid State Commun. 101, 883–887 (1997)

    Article  ADS  Google Scholar 

  3. M. Bayer et al., Phys. Rev. Lett. 82, 1748–1751 (1999)

    Article  ADS  Google Scholar 

  4. R. Heitz et al., Phys. Rev. B 56, 10435–10445 (1997)

    Article  ADS  Google Scholar 

  5. M. El Haouari, E Feddi. Polarons Liées Dans Les Boites Quantiques de Semi-Conducteur. Editions Universitaires Europeennes, (2011)

  6. A. A. Kiraz, S. Fälth, C. Becher, B. Gayral, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoğlu, Phys. Rev. B - Condens. Matter Mater. Phys. 65, 1–4 (2002).

    Article  Google Scholar 

  7. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, I. Abram, Phys. Rev. Lett. 87, 183601–1–183601–4 (2001).

  8. L. I. Glazman, R. C. Ashoori, Science (80-. ). 304, 524–525 (2004).

  9. D.V. Melnikov, J. Kim, L.X. Zhang, J.P. Leburton, IEE Proc. Circuits Devices Syst. 152, 377–384 (2005)

    Article  Google Scholar 

  10. O. Zilberberg, B. Braunecker, D. Loss, Phys. Rev. A - At. Mol. Opt. Phys. 77, (2008).

  11. T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, IEEE Trans. Nanotechnol. 3, 300–303 (2004)

    Article  ADS  Google Scholar 

  12. M.F. Doty et al., Phys. Rev. Lett. 97, 1–5 (2006)

    Article  Google Scholar 

  13. C.L. Zhao, S.Y. Li, C.Y. Cai, J.L. Xiao, Int. J. Theor. Phys. 58, 2711–2719 (2019)

    Article  Google Scholar 

  14. A. Boda, B. Boyacioglu, U. Erkaslan, A. Chatterjee, Phys. B Condens. Matter 498, 43–48 (2016)

    Article  ADS  Google Scholar 

  15. N. Issofa, A. J. Fotue1, S. C. Kenfack, M. Tiotsop, M. P. T. Djemmo, A. V. Wirngo , H. Fotsin, L. C. Fai. Am. J. Mod. Phys. 4, 158 (2015).

  16. Xu-Fang Bai, Wei Xin, Hong-Wu Yin and Eerdunchaolu., Int. J. Theor. Phys. 56, 1673–1684 (2017).

  17. A. J. Fotue, N. Issofa1 , M. Tiotsop , S. C. Kenfack , M. P. Tabue Djemmo, H. Fotsin, L. C. Fai., J. Semicond. 36, (2015).

  18. Y.-H. Chen, Y. Sun, S.-Y. Ji, W. Xiong, Z.-C. Pei, and Z.-W. Wang,, Superlattices Microstruct. 144, 106573 (2020).

  19. B. Donfack, A.J. Fotue, J. Low Temp. Phys. (2021). https://doi.org/10.1007/s10909-021-02604-9

    Article  Google Scholar 

  20. M.F.C. Fobasso, A.J. Fotue, S.C. Kenfack, C.M. Ekengoue, C.D.G. Ngoufack, D. Akay, L.C. Fai, Superlattices Microstruct. 129, 77 (2019)

    Article  ADS  Google Scholar 

  21. M.F.C. Fobasso , A.J. Fotue , S.C. Kenfack , G.N. Bawe , D. Akay Phys. Lett. Sect. A Gen. At. Solid State Phys. 382, 3490–3499 (2018).

  22. S. Mukhopadhyay, A. Chatterjee, J. Phys. Condens. Matter 8, 4017–4029 (1996)

    Article  ADS  Google Scholar 

  23. A. J. Fotue , S. C. Kenfack, M. Tiotsop, N. Issofa, A. V. Wirngo, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Mod. Phys. Lett. B 29, 1–13 (2015).

  24. Y.J. Chen, P.Y. Zhang, J. Low Temp. Phys. 194, 262–272 (2019)

    Article  ADS  Google Scholar 

  25. Y. Zhang, C. Han, Eerdunchaolu. Optoelectron. Lett. 11, 386–389 (2015)

    Article  ADS  Google Scholar 

  26. X. F. Bai, Y. Zhang, Wuyunqimuge, Eerdunchaolu, Chinese Phys. B 25, 077804 (2016).

  27. S.C. Kenfack, A.J. Fotué, M.F.C. Fobasso, G.N. Bawe, L.C. Fai, Superlattices Microstruct. 111, 32–44 (2017)

    Article  ADS  Google Scholar 

  28. J.L. Xiao, J. Low Temp. Phys. 174, 284–291 (2014)

    Article  ADS  Google Scholar 

  29. Y. Zhao, C. Han, W. Xin, Eerdunchaolu. Superlattices Microstruct. 74, 198–205 (2014)

    Article  ADS  Google Scholar 

  30. Y. Wuyunqimuge, H.W. Zhang, C. Yin, Han, Eerdunchaolu. J. Low Temp. Phys. 187, 221–231 (2017)

    Article  ADS  Google Scholar 

  31. W R. Q. Wang, H. J. Xie, and Y. Bin Yu, Int. J. Mod. Phys. B 18, 2887–2899 (2004).

  32. W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, J.L. Xiao, J. Low Temp. Phys. 160, 112–118 (2010)

    Article  ADS  Google Scholar 

  33. C. Kenfack-Sadem, F. C. Fobasso Mbognou, A. J. Fotue, M. N. Hounkonnou, D. Akay, L. C. Fai, J. Low Temp. Phys. 203, 327–344 (2021).

  34. J. lin Xiao, J. Low Temp. Phys. 192, 41–47 (2018).

  35. X. Wei, B. Qi, J.L. Xiao, J. Low Temp. Phys. 179, 166–174 (2015)

    Article  ADS  Google Scholar 

  36. X. Bai, W. Xin, and X. Liu, Eur. Phys. J. Plus 123, (2020).

  37. Y. WZhao, C Han, W Xin, Eerdunchaolu, Superlattices Microstruct. 74 198 (2014).

  38. B.S. Kandemir, A. Cetin, J. Phys. Condens. Matter 17, 667–677 (2005)

    Article  ADS  Google Scholar 

  39. C. Shihua, X. Jinglin, Chin. J. Electron. 18 (2009)

Download references

Acknowledgements

The authors thank the Intra-African Program for funding under ACADEMY project No 2017-3052/001-001, and the Theoretical Physics Laboratory of the University Abou Bekr Belkaid of Tlemcen (Algeria) for all the support. M. S. M is grateful to the Abdus Salam International Centre for theoretical Physics (ICTP) for its support through the OEA-AF-12 project. A.E.M. is grateful to DGRSDT and MHESR of Algeria for financial support under the PRFU research project N° B00L02UN130120180011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoufack Guimapi, D.C., Silenou Mengoue, M., Merad, A.E. et al. Decoherence of Magneto-Bipolaron with Strong Coupling in a Quantum Dot Qubit Under Applied Electric Field. J Low Temp Phys 205, 11–28 (2021). https://doi.org/10.1007/s10909-021-02612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02612-9

Keywords

Navigation