Skip to main content
Log in

Vesicle-Based Sensors for Extracellular Potassium Detection

  • 2021 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The design of sensors that can detect biological ions in situ remains challenging. While many fluorescent indicators exist that can provide a fast, easy readout, they are often nonspecific, particularly to ions with similar charge states. To address this issue, we developed a vesicle-based sensor that harnesses membrane channels to gate access of potassium (K+) ions to an encapsulated fluorescent indicator.

Methods

We assembled phospholipid vesicles that incorporated valinomycin, a K+ specific membrane transporter, and that encapsulated benzofuran isophthalate (PBFI), a K+ sensitive dye that nonspecifically fluoresces in the presence of other ions, like sodium (Na+). The specificity, kinetics, and reversibility of encapsulated PBFI fluorescence was determined in a plate reader and fluorimeter. The sensors were then added to E. coli bacterial cultures to evaluate K+ levels in media as a function of cell density.

Results

Vesicle sensors significantly improved specificity of K+ detection in the presence of a competing monovalent ion, sodium (Na+), and a divalent cation, calcium (Ca2+), relative to controls where the dye was free in solution. The sensor was able to report both increases and decreases in K+ concentration. Finally, we observed our vesicle sensors could detect changes in K+ concentration in bacterial cultures.

Conclusion

Our data present a new platform for extracellular ion detection that harnesses ion-specific membrane transporters to improve the specificity of ion detection. By changing the membrane transporter and encapsulated sensor, our approach should be broadly useful for designing biological sensors that detect an array of biological analytes in traditionally hard-to-monitor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bazzigaluppi, P., S. Dufour, and P. L. Carlen. Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo. Neuroimage, 104:110–116, 2015.

    Article  Google Scholar 

  2. Bischof, H., et al. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun. 8:1–12, 2017.

    Article  Google Scholar 

  3. Boyd, M. A., and N. P. Kamat. Designing artificial cells towards a new generation of biosensors. Trends Biotechnol. In Press, 2020.

    Google Scholar 

  4. Boyd, M. A., and N. P. Kamat. Visualizing tension and growth in model membranes using optical dyes. Biophys. J., 115:1307–1315, 2018.

    Article  Google Scholar 

  5. Cayley, S., and M. T. Record. Roles of cytoplasmic osmolytes, water, and crowding in the response of escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine. Biochemistry 42:12596–12609, 2003.

    Article  Google Scholar 

  6. Cheng, C. J., E. Kuo, and C. L. Huang. Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis. Semin. Nephrol. 33:237–247, 2013.

    Article  Google Scholar 

  7. Dinnbier, U., E. Limpinsel, R. Schmid, and E. P. Bakker. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150:348–357, 1988.

    Article  Google Scholar 

  8. Dufour, S., P. Dufour, O. Chever, R. Vallée, and F. Amzica. In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J. Neurosci. Methods 194:206–217, 2011.

    Article  Google Scholar 

  9. Eil, R., et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537:539–543, 2016.

    Article  Google Scholar 

  10. Filosa, J. A., et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9:1397–1403, 2006.

    Article  Google Scholar 

  11. Halperin, M. L., and K. S. Kamel. Potassium. Lancet 352:135–140, 1998.

    Article  Google Scholar 

  12. He, H., M. A. Mortellaro, M. J. P. Leiner, R. J. Fraatz, and J. K. Tusa. A fluorescent sensor with high selectivity and sensitivity for potassium in water. J. Am. Chem. Soc. 125:1468–1469, 2003.

    Article  Google Scholar 

  13. Kasner, S. E., and M. B. Ganz. Regulation of intracellular potassium in mesangial cells: A fluorescence analysis using the dye, PBFI. Am. J. Physiol. Ren. Fluid Electrolyte Physiol. 262:F462–F467, 1992.

    Article  Google Scholar 

  14. Kozoriz, M. G., J. Church, M. A. Ozog, C. C. Naus, and C. Krebs. Temporary sequestration of potassium by mitochondria in astrocytes. J. Biol. Chem. 285:31107–31119, 2010.

    Article  Google Scholar 

  15. Kubitschek, H. E., M. L. Freedman, and S. Silver. Potassium uptake in synchronous and synchronized cultures of Escherichia coli. Biophys. J. 11:787–797, 1971.

    Article  Google Scholar 

  16. Li, C., G. L. Law, and W. T. Wong. Luminescent Tb3+ complex with pendant crown ether showing dual-component recognition of H+ and K+ at multiple pH windows. Org. Lett. 6:4841–4844, 2004.

    Article  Google Scholar 

  17. Liu, J., et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci. Adv. 6:1–11, 2020.

    Google Scholar 

  18. Liu, J., et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat. Nanotechnol. 15:321–330, 2020.

    Article  Google Scholar 

  19. Lomora, M., F. Itel, I. A. Dinu, and C. G. Palivan. Selective ion-permeable membranes by insertion of biopores into polymersomes. Phys. Chem. Chem. Phys. 17:15538–15546, 2015.

    Article  Google Scholar 

  20. McLaggan, D., J. Naprstek, E. T. Buurman, and W. Epstein. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem. 269:1911–1917, 1994.

    Article  Google Scholar 

  21. Meury, J., A. Robin, and P. Monnier-Champiex. Turgor-controlled K+ fluxes and their pathways in Escherichia coli. Eur. J. Biochem 151:613–619, 1985.

    Article  Google Scholar 

  22. Meuwis, K., N. Boens, F. C. De Schryver, J. Gallay, and M. Vincent. Photophysics of the fluorescent K+ indicator PBFI. Biophys. J. 68:2469–2473, 1995.

    Google Scholar 

  23. Minta, A., and R. Y. Tsien. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264:19449–19457, 1989.

    Article  Google Scholar 

  24. Monnard, P. A., and D. W. Deamer. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268:196–207, 2002.

    Google Scholar 

  25. Mueller, P., and D. O. Rudin. Development of K+Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. Biophys. Res. Commun. 26:398–404, 1967.

    Article  Google Scholar 

  26. Newsom-Davis, J., et al. Autoimmune disorders of neuronal potassium channels. Ann. N. Y. Acad. Sci. 998:202–210, 2003.

    Article  Google Scholar 

  27. Padmawar, P., X. Yao, O. Bloch, G. T. Manley, and A. S. Verkman. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat. Methods 2:825–827, 2005.

    Article  Google Scholar 

  28. Palmer, B. F. Regulation Of Potassium Homeostasis. Clin. J. Am. Soc. Nephrol. 10:1050–1060, 2014.

    Article  Google Scholar 

  29. Prindle, A., J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G. M. Süel. Ion channels enable electrical communication in bacterial communities. Nature 527:59–63, 2015.

    Article  Google Scholar 

  30. Rana, P. S., et al. Calibration and characterization of intracellular Asante Potassium Green probes, APG-2 and APG-4. Anal. Biochem. 567:8–13, 2019.

    Article  Google Scholar 

  31. Rimmele, T. S., and J. Y. Chatton. A novel optical intracellular imaging approach for potassium dynamics in astrocytes. PLoS ONE 9:e109243, 2014.

    Article  Google Scholar 

  32. Sica, D. A., A. D. Struthers, W. C. Cushman, M. Wood, J. S. Banas, and M. Epstein. Importance of potassium in cardiovascular disease. J. Clin. Hypertens. 4:198–206, 2002.

    Article  Google Scholar 

  33. Steller, L., M. Kreir, and R. Salzer. Natural and artificial ion channels for biosensing platforms. Anal. Bioanal. Chem. 402:209–230, 2012.

    Article  Google Scholar 

  34. Su, Z. F., X. Q. Ran, J. J. Leitch, A. L. Schwan, R. Faragher, and J. Lipkowski. How valinomycin ionophores enter and transport K+ across model lipid bilayer membranes. Langmuir 35:16935–16943, 2019.

    Article  Google Scholar 

  35. Szatmári, D., et al. Intracellular ion concentrations and cation-dependent remodelling of bacterial MreB assemblies. Sci. Rep. 10:12002, 2020.

    Article  Google Scholar 

  36. van de Velde, L., E. d’Angremont, and W. Olthuis. Solid contact potassium selective electrodes for biomedical applications—a review. Talanta 160:56–65, 2016.

    Article  Google Scholar 

  37. Yellen, G. The voltage-gated potassium channels and their relatives. Nature. 419:35–42, 2002.

    Article  Google Scholar 

  38. Zhou, X., F. Su, Y. Tian, C. Youngbull, R. H. Johnson, and D. R. Meldrum. A new highly selective fluorescent K+ sensor. J. Am. Chem. Soc. 133:18530–18533, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cornew Innovation Award from the Chemistry of Life Processes Institute at Northwestern University (to NPK) and the National Science Foundation (CBET-1844219 and CBET-1844336 to NPK). MAB was supported by the National Defense Science and Engineering Graduate Fellowship through the Department of Defense. AMD and NRC were assisted by a grant from the Undergraduate Research Grant Program, which is administered by Northwestern University’ s Office of Undergraduate Research, and by a grant from Northwestern’s Biomedical Engineering Department.

Conflict of interest

Margrethe Boyd, Anna Davis, Nora Chambers, Peter Tran, Arthur Prindle, and Neha P. Kamat declare that they have no conflicts of interest.

Ethical Approval

No animal or human studies were performed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha P. Kamat.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4374 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, M.A., Davis, A.M., Chambers, N.R. et al. Vesicle-Based Sensors for Extracellular Potassium Detection. Cel. Mol. Bioeng. 14, 459–469 (2021). https://doi.org/10.1007/s12195-021-00688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00688-7

Keywords

Navigation